diabetestalk.net

Ketoacidosis Can Result In

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic ketoacidosis is a metabolic complication of alcohol use and starvation characterized by hyperketonemia and anion gap metabolic acidosis without significant hyperglycemia. Alcoholic ketoacidosis causes nausea, vomiting, and abdominal pain. Diagnosis is by history and findings of ketoacidosis without hyperglycemia. Treatment is IV saline solution and dextrose infusion. Alcoholic ketoacidosis is attributed to the combined effects of alcohol and starvation on glucose metabolism. Alcohol diminishes hepatic gluconeogenesis and leads to decreased insulin secretion, increased lipolysis, impaired fatty acid oxidation, and subsequent ketogenesis, causing an elevated anion gap metabolic acidosis. Counter-regulatory hormones are increased and may further inhibit insulin secretion. Plasma glucose levels are usually low or normal, but mild hyperglycemia sometimes occurs. Diagnosis requires a high index of suspicion; similar symptoms in an alcoholic patient may result from acute pancreatitis, methanol or ethylene glycol poisoning, or diabetic ketoacidosis (DKA). In patients suspected of having alcoholic ketoacidosis, serum electrolytes (including magnesium), BUN and creatinine, glucose, ketones, amylase, lipase, and plasma osmolality should be measured. Urine should be tested for ketones. Patients who appear significantly ill and those with positive ketones should have arterial blood gas and serum lactate measurement. The absence of hyperglycemia makes DKA improbable. Those with mild hyperglycemia may have underlying diabetes mellitus, which may be recognized by elevated levels of glycosylated Hb (HbA1c). Typical laboratory findings include a high anion gap metabolic acidosis, ketonemia, and low levels of potassium, magnesium, and phosphorus. Detection of acidosis may be com Continue reading >>

Diabetic Ketoacidosis Explained

Diabetic Ketoacidosis Explained

Twitter Summary: DKA - a major complication of #diabetes – we describe what it is, symptoms, who’s at risk, prevention + treatment! One of the most notorious complications of diabetes is diabetic ketoacidosis, or DKA. First described in the late 19th century, DKA represented something close to the ultimate diabetes emergency: In just 24 hours, people can experience an onset of severe symptoms, all leading to coma or death. But DKA also represents one of the great triumphs of the revolution in diabetes care over the last century. Before the discovery of insulin in 1920, DKA was almost invariably fatal, but the mortality rate for DKA dropped to below 30 percent within 10 years, and now fewer than 1 percent of those who develop DKA die from it, provided they get adequate care in time. Don’t skip over that last phrase, because it’s crucial: DKA is very treatable, but only as long as it’s diagnosed promptly and patients understand the risk. Table of Contents: What are the symptoms of DKA? Does DKA occur in both type 1 and type 2 diabetes? What Can Patients do to Prevent DKA? What is DKA? Insulin plays a critical role in the body’s functioning: it tells cells to absorb the glucose in the blood so that the body can use it for energy. When there’s no insulin to take that glucose out of the blood, high blood sugar (hyperglycemia) results. The body will also start burning fatty acids for energy, since it can’t get that energy from glucose. To make fatty acids usable for energy, the liver has to convert them into compounds known as ketones, and these ketones make the blood more acidic. DKA results when acid levels get too high in the blood. There are other issues too, as DKA also often leads to the overproduction and release of hormones like glucagon and adrenaline Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) happens when your blood sugar is high and your insulin level is low. This imbalance in the body causes a build-up of ketones. Ketones are toxic. If DKA isn’t treated, it can lead to diabetic coma and even death. DKA mainly affects people who have type 1 diabetes. But it can also happen with other types of diabetes, including type 2 diabetes and gestational diabetes (during pregnancy). DKA is a very serious condition. If you have diabetes and think you may have DKA, contact your doctor or get to a hospital right away. The first symptoms to appear are usually: frequent urination. The next stage of DKA symptoms include: vomiting (usually more than once) confusion or trouble concentrating a fruity odor on the breath. The main cause of DKA is not enough insulin. A lack of insulin means sugar can’t get into your cells. Your cells need sugar for energy. This causes your body’s glucose levels to rise. To get energy, the body starts to burn fat. This process causes ketones to build up. Ketones can poison the body. High blood glucose levels can also cause you to urinate often. This leads to a lack of fluids in the body (dehydration). DKA can be caused by missing an insulin dose, eating poorly, or feeling stressed. An infection or other illness (such as pneumonia or a urinary tract infection) can also lead to DKA. If you have signs of infection (fever, cough, or sore throat), contact your doctor. You will want to make sure you are getting the right treatment. For some people, DKA may be the first sign that they have diabetes. When you are sick, you need to watch your blood sugar level very closely so that it doesn’t get too high or too low. Ask your doctor what your critical blood sugar level is. Most patients should watch their glucose levels c Continue reading >>

Is Keto Healthy? Ketosis Vs Ketoacidosis

Is Keto Healthy? Ketosis Vs Ketoacidosis

Is Keto Healthy? Ketosis vs Ketoacidosis When looking at a ketogenic diet and ketosis, it’s common for some people to confuse the process with a harmful, more extreme version of this state known as diabetic ketoacidosis. But there are a lot of misconceptions out there about ketosis vs ketoacidosis, and it’s time to shed some light on the subject by looking at the (very big) differences between the two. An Overview of Ketosis A ketogenic, or keto, diet is centered around the process of ketosis, so it’s important to understand exactly what ketosis is first before we get into whether or not it’s safe (spoiler: it is): Ketosis is a metabolic state where the body is primarily using fat for energy instead of carbohydrates. Burning carbohydrates (glucose) for energy is the default function of the body, so if glucose is available, the body will use that first. But during ketosis, the body is using ketones instead of glucose. This is an amazing survival adaptation by the body for handling periods of famine or fasting, extreme exercise, or anything else that leaves the body without enough glucose for fuel. Those eating a ketogenic diet purposely limit their carb intake (usually between 20 and 50 grams per day) to facilitate this response. That’s why the keto diet focuses on very low carb intake, moderate to low protein intake, and high intakes of dietary fats. Lower protein is important because it prevents the body from pulling your lean muscle mass for energy and instead turns to fat. Ketone bodies are released during ketosis and are created by the liver from fatty acids. These ketones are then used by the body to power all of its biggest organs, including the brain, and they have many benefits for the body we’ll get into later. But first, let’s address a common mi Continue reading >>

Ketoacidosis

Ketoacidosis

High blood glucose levels can put you at risk of a serious condition called ketoacidosis. If there is not enough insulin for your body cells to use glucose for energy, your blood glucose levels will rise and your body will break down fats instead (as another energy source). However, fat breakdown leads to your body forming ketones which you can detect in your blood or urine. High blood glucose levels and ketones can result in diabetic ketoacidosis (DKA), requiring hospitalisation. Ketoacidosis may occur when you are unwell, forget to take your insulin or don’t take enough insulin. To check for ketones you can: Test your blood (using a monitor which can test for both glucose and ketones in your blood) OR Test your urine (using urine test strips available where you buy your blood testing strips) The risk of ketoacidosis increases during pregnancy and is very dangerous, especially for the baby. It is important to go to hospital immediately if your blood glucose levels are high and there is any sign of ketoacidosis (blood ketones more than 0.6 or urine ketones more than 1+). Continue reading >>

Diabetes With Ketone Bodies In Cats

Diabetes With Ketone Bodies In Cats

Diabetic ketoacidosis is an extreme medical emergency that requires immediate veterinary attention. The condition can result in an accumulation of fluid in the brain and lungs, renal failure or heart failure. Affected animals that are not treated are likely to die. With timely intervention and proper treatment, it is likely that an affected cat can recover with little to no side effects. Diabetes mellitus occurs when the pancreas fails to produce sufficient insulin, creating an inability to efficiently process the sugars, fats, and proteins needed for energy. The resulting build-up of sugar causes extreme thirst and frequent urination. Since sugar levels help to control appetite, affected animals may experience a spike in hunger and lose weight at the same time due to the inability to properly process nutrients. In extreme cases, diabetes may be accompanied by a condition known as ketoacidosis. This is a serious ailment that causes energy crisis and abnormal blood-acid levels in affected pets. Cats affected with diabetic ketoacidosis are likely to present with one or more of the following symptoms: Vomiting Weakness Lethargy Depression Excessive Thirst Refusal to drink water Refusal to eat Sudden weight loss Loss of muscle tone Increased urination Dehydration Rough coat Dandruff Rapid breathing Sweet-smelling breath Jaundice The exact cause of diabetes in cats is unknown, but it is often accompanied by obesity, chronic pancreatitis, hormonal disease, or the use of corticosteroids like Prednisone. Ketoacidosis, the buildup of ketone waste products in the blood that occurs when the body burns fat and protein for energy instead of using glucose, is caused by insulin-dependent diabetes. Diabetic ketoacidosis is commonly preceded by other conditions including: Stress Surgery Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Background Diabetic ketoacidosis (DKA), once thought to typify type 1 diabetes mellitus, has been reported to affect individuals with type 2 diabetes mellitus. An analysis and overview of the different clinical and biochemical characteristics of DKA that might be predicted between patients with type 1 and type 2 diabetes is needed. Methods We reviewed 176 admissions of patients with moderate-to-severe DKA. Patients were classified as having type 1 or type 2 diabetes based on treatment history and/or autoantibody status. Groups were compared for differences in symptoms, precipitants, vital statistics, biochemical profiles at presentation, and response to therapy. Results Of 138 patients admitted for moderate-to-severe DKA, 30 had type 2 diabetes. A greater proportion of the type 2 diabetes group was Latino American or African American (P<.001). Thirty-five admissions (19.9%) were for newly diagnosed diabetes. A total of 85% of all admissions involved discontinuation of medication use, 69.2% in the type 2 group. Infections were present in 21.6% of the type 1 and 48.4% of the type 2 diabetes admissions. A total of 21% of patients with type 1 diabetes and 70% with type 2 diabetes had a body mass index greater than 27. Although the type 1 diabetes group was more acidotic (arterial pH, 7.21 ± 0.12 vs 7.27 ± 0.08; P<.001), type 2 diabetes patients required longer treatment periods (36.0 ± 11.6 vs 28.9 ± 8.9 hours, P = .01) to achieve ketone-free urine. Complications from therapy were uncommon. Conclusions A significant proportion of DKA occurs in patients with type 2 diabetes. The time-tested therapy for DKA of intravenous insulin with concomitant glucose as the plasma level decreases, sufficient fluid and electrolyte replacement, and attention to associated problems remai Continue reading >>

Ketosis Vs. Ketoacidosis: What You Should Know

Ketosis Vs. Ketoacidosis: What You Should Know

Despite the similarity in name, ketosis and ketoacidosis are two different things. Ketoacidosis refers to diabetic ketoacidosis (DKA) and is a complication of type 1 diabetes mellitus. It’s a life-threatening condition resulting from dangerously high levels of ketones and blood sugar. This combination makes your blood too acidic, which can change the normal functioning of internal organs like your liver and kidneys. It’s critical that you get prompt treatment. DKA can occur very quickly. It may develop in less than 24 hours. It mostly occurs in people with type 1 diabetes whose bodies do not produce any insulin. Several things can lead to DKA, including illness, improper diet, or not taking an adequate dose of insulin. DKA can also occur in individuals with type 2 diabetes who have little or no insulin production. Ketosis is the presence of ketones. It’s not harmful. You can be in ketosis if you’re on a low-carbohydrate diet or fasting, or if you’ve consumed too much alcohol. If you have ketosis, you have a higher than usual level of ketones in your blood or urine, but not high enough to cause acidosis. Ketones are a chemical your body produces when it burns stored fat. Some people choose a low-carb diet to help with weight loss. While there is some controversy over their safety, low-carb diets are generally fine. Talk to your doctor before beginning any extreme diet plan. DKA is the leading cause of death in people under 24 years old who have diabetes. The overall death rate for ketoacidosis is 2 to 5 percent. People under the age of 30 make up 36 percent of DKA cases. Twenty-seven percent of people with DKA are between the ages of 30 and 50, 23 percent are between the ages of 51 and 70, and 14 percent are over the age of 70. Ketosis may cause bad breath. Ket Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

What Is Diabetic Ketoacidosis?

What Is Diabetic Ketoacidosis?

Diabetic ketoacidosis, or DKA, is a serious health problem that can happen to a person with diabetes. It happens when chemicals called ketones build up in the blood. Normally, the cells of your body take in and use glucose as a source of energy. Glucose moves through the body in the bloodstream. Insulin is a hormone that helps your cells take in the glucose from the blood. If you have diabetes, your cells can’t take in and use this glucose in a normal way. This may be because your body doesn’t make enough insulin. Or it may be because your cells don’t respond to it normally. As a result, glucose builds up in your bloodstream and doesn’t reach your cells. Without glucose to use, the cells in your body burn fat instead of glucose for energy. When cells burn fat, they make ketones. High levels of ketones can poison the body. High levels of glucose can also build up in your blood and cause other symptoms. Ketoacidosis also changes the amount of other substances in your blood. These include electrolytes, such as sodium, potassium, and bicarbonate. This can lead to other problems. Ketoacidosis happens most often in a person with type 1 diabetes. This is a condition where the body does not make enough insulin. In rare cases, ketoacidosis can happen in a person with type 2 diabetes. It can happen when they are under stress, like when they are sick, or when they have taken certain medicines that change how their bodies handle glucose. Diabetic ketoacidosis is pretty common. It is more common in younger people. Women have it more often than men do. What causes diabetic ketoacidosis? High levels of ketones and glucose in your blood can cause ketoacidosis. This might happen if you: Don’t know you have diabetes, and your body is breaking down too much fat Know you have dia Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic acidosis is a life-threatening condition that can occur in people with type 1 diabetes. Less commonly, it can also occur with type 2 diabetes. Term watch Ketones: breakdown products from the use of fat stores for energy. Ketoacidosis: another name for diabetic acidosis. It happens when a lack of insulin leads to: Diabetic acidosis requires immediate hospitalisation for urgent treatment with fluids and intravenous insulin. It can usually be avoided through proper treatment of Type 1 diabetes. However, ketoacidosis can also occur with well-controlled diabetes if you get a severe infection or other serious illness, such as a heart attack or stroke, which can cause vomiting and resistance to the normal dose of injected insulin. What causes diabetic acidosis? The condition is caused by a lack of insulin, most commonly when doses are missed. While insulin's main function is to lower the blood sugar level, it also reduces the burning of body fat. If the insulin level drops significantly, the body will start burning fat uncontrollably while blood sugar levels rise. Glucose will then begin to show up in your urine, along with ketone bodies from fat breakdown that turn the body acidic. The body attempts to reduce the level of acid by increasing the rate and depth of breathing. This blows off carbon dioxide in the breath, which tends to correct the acidosis temporarily (known as acidotic breathing). At the same time, the high secretion of glucose into the urine causes large quantities of water and salts to be lost, putting the body at serious risk of dehydration. Eventually, over-breathing becomes inadequate to control the acidosis. What are the symptoms? Since diabetic acidosis is most often linked with high blood sugar levels, symptoms are the same as those for diabetes Continue reading >>

The Many Faces Of Diabetic Ketoacidosis

The Many Faces Of Diabetic Ketoacidosis

Upon perusal of the www.healthcentral.diabeteens.com web site, there appears to be pervasive discussions of Diabetic Ketoacidosis (DKA) and its various permutations. I wanted to define and discuss the multiple situations leading up to DKA and talk about the mythical condition of “brittle” diabetes. What is diabetic ketoacidosis? DKA results when there is insufficient insulin to enable carbohydrates to enter into the body’s cells. As a result, the body must metabolize fat and muscle to manufacture energy. This process is extraordinarily inefficient and leads to the development of ketones, a by product of fat breakdown. The blood ketones accumulate and can lead to increased acid in the blood resulting in serious consequences such as vomiting, loss of consciousness, potential coma or death. Because glucose cannot get into the cells, the concentration increases in the blood and thereby causes increased drinking, increased thirst and increased urination resulting in dehydration. Dehydration, in association with acidosis (increased levels of acid in the blood), leads to a condition known as Diabetic Ketoacidosis. The treatment of DKA involves IV fluids to allow for rehydration, an IV insulin drip to enable blood glucose to go into cells, and very close monitoring of vital signs and laboratory values. Generally, DKA requires an admission to the Intensive Care Unit. It is important to understand the different paths leading to this dangerous condition so you may take early action to prevent the situation. There is essentially 1 path to DKA: insufficient insulin to transport blood glucose into cells. Therefore, it is important to remember that the final common pathway to DKA is lack of insulin to metabolize glucose. Frequent hospitalizations for Diabetic Ketoacidosis raise Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

© 1996–2017 themedicalbiochemistrypage.org, LLC | info @ themedicalbiochemistrypage.org Definition of Diabetic Ketoacidosis The most severe and life threatening complication of poorly controlled type 1 diabetes is diabetic ketoacidosis (DKA). DKA is characterized by metabolic acidosis, hyperglycemia and hyperketonemia. Diagnosis of DKA is accomplished by detection of hyperketonemia and metabolic acidosis (as measured by the anion gap) in the presence of hyperglycemia. The anion gap refers to the difference between the concentration of cations other than sodium and the concentration of anions other than chloride and bicarbonate. The anion gap therefore, represents an artificial assessment of the unmeasured ions in plasma. Calculation of the anion gap involves sodium (Na+), chloride (Cl–) and bicarbonate (HCO3–) measurements and it is defined as [Na+ – (Cl– + HCO3–)] where the sodium and chloride concentrations are measured as mEq/L and the bicarbonate concentration is mmol/L. The anion gap will increase when the concentration of plasma K+, Ca2+, or Mg2+ is decreased, when organic ions such as lactate are increased (or foreign anions accumulate), or when the concentration or charge of plasma proteins increases. Normal anion gap is between 8mEq/L and 12mEq/L and a higher number is diagnostic of metabolic acidosis. Rapid and aggressive treatment is necessary as the metabolic acidosis will result in cerebral edema and coma eventually leading to death. The hyperketonemia in DKA is the result of insulin deficiency and unregulated glucagon secretion from α-cells of the pancreas. Circulating glucagon stimulates the adipose tissue to release fatty acids stored in triglycerides. The free fatty acids enter the circulation and are taken up primarily by the liver where Continue reading >>

More in ketosis