diabetestalk.net

Is There A Role For Sodium Bicarbonate In Treating Lactic Acidosis From Shock?

Bicarbonate Therapy In Severe Metabolic Acidosis

Bicarbonate Therapy In Severe Metabolic Acidosis

Abstract The utility of bicarbonate administration to patients with severe metabolic acidosis remains controversial. Chronic bicarbonate replacement is obviously indicated for patients who continue to lose bicarbonate in the ambulatory setting, particularly patients with renal tubular acidosis syndromes or diarrhea. In patients with acute lactic acidosis and ketoacidosis, lactate and ketone bodies can be converted back to bicarbonate if the clinical situation improves. For these patients, therapy must be individualized. In general, bicarbonate should be given at an arterial blood pH of ≤7.0. The amount given should be what is calculated to bring the pH up to 7.2. The urge to give bicarbonate to a patient with severe acidemia is apt to be all but irresistible. Intervention should be restrained, however, unless the clinical situation clearly suggests benefit. Here we discuss the pros and cons of bicarbonate therapy for patients with severe metabolic acidosis. Metabolic acidosis is an acid-base disorder characterized by a primary consumption of body buffers including a fall in blood bicarbonate concentration. There are many causes (Table 1), and there are multiple mechanisms that minimize the fall in arterial pH. A patient with metabolic acidosis may have a normal or even high pH if there is another primary, contravening event that raises the bicarbonate concentration (vomiting) or lowers the arterial Pco2 (respiratory alkalosis). Metabolic acidosis differs from “acidemia” in that the latter refers solely to a fall in blood pH and not the process. A recent online survey by Kraut and Kurtz1 highlighted the uncertainty over when to give bicarbonate to patients with metabolic acidosis. They reported that nephrologists will prescribe therapy at a higher pH compared with Continue reading >>

Lactic Acidosis

Lactic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. Description Lactic acidosis is a form of metabolic acidosis due to the inadequate clearance of lactic acid from the blood. Lactate is a byproduct of anaerobic respiration and is normally cleared from the blood by the liver, kidney and skeletal muscle. Lactic acidosis occurs when the body's buffering systems are overloaded and tends to cause a pH of ≤7.25 with plasma lactate ≥5 mmol/L. It is usually caused by a state of tissue hypoperfusion and/or hypoxia. This causes pyruvic acid to be preferentially converted to lactate during anaerobic respiration. Hyperlactataemia is defined as plasma lactate >2 mmol/L. Classification Cohen and Woods devised the following system in 1976 and it is still widely used:[1] Type A: lactic acidosis occurs with clinical evidence of tissue hypoperfusion or hypoxia. Type B: lactic acidosis occurs without clinical evidence of tissue hypoperfusion or hypoxia. It is further subdivided into: Type B1: due to underlying disease. Type B2: due to effects of drugs or toxins. Type B3: due to inborn or acquired errors of metabolism. Epidemiology The prevalence is very difficult to estimate, as it occurs in critically ill patients, who are not often suitable subjects for research. It is certainly a common occurrence in patients in high-dependency areas of hospitals.[2] The incidence of symptomatic hyperlactataemia appears to be rising as a consequence of the use of antiretroviral therapy to treat HIV infection. It appears to increase in those taking stavudine (d4T) regimens.[3] Causes of lactic acid Continue reading >>

Prime Pubmed | Sodium Bicarbonate For The Treatment Of Lactic Acidosi

Prime Pubmed | Sodium Bicarbonate For The Treatment Of Lactic Acidosi

Lactic acidosis often challenges the intensivist and is associated with a strikingly high mortality. Treatment involves discerning and correcting its underlying cause, ensuring adequate oxygen delivery to tissues, reducing oxygen demand through sedation and mechanical ventilation, and (most controversially) attempting to alkalinize the blood with IV sodium bicarbonate. Here we review the literature to answer the following questions: Is a low pH bad? Can sodium bicarbonate raise the pH in vivo? Does increasing the blood pH with sodium bicarbonate have any salutary effects? Does sodium bicarbonate have negative side effects? We find that the oft-cited rationale for bicarbonate use, that it might ameliorate the hemodynamic depression of metabolic acidemia, has been disproved convincingly. Further, given the lack of evidence supporting its use, we cannot condone bicarbonate administration for patients with lactic acidosis, regardless of the degree of acidemia. Forsythe, S M., and G A. Schmidt. "Sodium Bicarbonate for the Treatment of Lactic Acidosis." Chest, vol. 117, no. 1, 2000, pp. 260-7. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117(1):260-7. Forsythe, S. M., & Schmidt, G. A. (2000). Sodium bicarbonate for the treatment of lactic acidosis. Chest, 117(1), pp. 260-7. Forsythe SM, Schmidt GA. Sodium Bicarbonate for the Treatment of Lactic Acidosis. Chest. 2000;117(1):260-7. PubMed PMID: 10631227. * Article titles in AMA citation format should be in sentence-case TY - JOURT1 - Sodium bicarbonate for the treatment of lactic acidosis.AU - Forsythe,S M,AU - Schmidt,G A,PY - 2000/1/13/pubmedPY - 2000/1/13/medlinePY - 2000/1/13/entrezSP - 260EP - 7JF - ChestJO - ChestVL - 117IS - 1N2 - Lactic acidosis often challenges the inte Continue reading >>

Is There A Role For Sodium Bicarbonate In Treating Lactic Acidosis From Shock?

Is There A Role For Sodium Bicarbonate In Treating Lactic Acidosis From Shock?

Curr Opin Crit Care. 2008 Aug;14(4):379-83. doi: 10.1097/MCC.0b013e3283069d5c. Is there a role for sodium bicarbonate in treating lactic acidosis from shock? University of British Columbia, Critical Care Research Laboratories, Vancouver, British Columbia, Canada. Bicarbonate therapy for severe lactic acidosis remains a controversial therapy. The most recent 2008 Surviving Sepsis guidelines strongly recommend against the use of bicarbonate in patients with pH at least 7.15, while deferring judgment in more severe acidemia. We review the mechanisms causing lactic acidosis in the critically ill and the scientific rationale behind treatment with bicarbonate. There is little rationale or evidence for the use of bicarbonate therapy for lactic acidosis due to shock. We agree with the Surviving Sepsis guidelines recommendation against the use of bicarbonate for lactic acidosis for pH at least 7.15 and we further recommend a lower target pH of 7.00 or less. If bicarbonate is used, consideration must be given to slow infusion and a plan for clearing the CO2 that is produced and measuring and correcting ionized calcium as the resultant 10% drop may decrease cardiac and vascular contractility and responsiveness to catecholamines. When continuous renal replacement therapy is used during severe acidosis, we recommend bicarbonate-based replacement fluid over citrate as citrate may increase the strong ion gap. Effective therapy of lactic acidosis due to shock is to reverse the cause. Continue reading >>

Shock (circulatory) - Wikipedia

Shock (circulatory) - Wikipedia

"Acute shock" redirects here. For the psychological condition, see Acute stress reaction . Shock is a life-threatening medical condition of low blood perfusion to tissues resulting in cellular injury and inadequate tissue function. [1] [2] The typical signs of shock are low blood pressure , rapid heart rate , signs of poor end-organ perfusion (i.e., low urine output, confusion, or loss of consciousness), and weak pulses. The shock index (SI), defined as heart rate divided by systolic blood pressure, is an accurate diagnostic measure that is more useful than hypotension and tachycardia in isolation. [3] Under normal conditions, a number between 0.5 and 0.8 is typically seen. Should that number increase, so does suspicion of an underlying state of shock. Blood pressure alone may not be a reliable sign for shock, as there are times when a person is in circulatory shock but has a stable blood pressure. [4] Circulatory shock is not related to the emotional state of shock . Circulatory shock is a life-threatening medical emergency and one of the most common causes of death for critically ill people. Shock can have a variety of effects, all with similar outcomes, but all relate to a problem with the body's circulatory system. For example, shock may lead to hypoxemia (a lack of oxygen in arterial blood) or cardiac and/or respiratory arrest . [5] One of the key dangers of shock is that it progresses by a positive feedback mechanism. Poor blood supply leads to cellular damage, which results in an inflammatory response to increase blood flow to the affected area. This is normally very useful to match up blood supply level with tissue demand for nutrients. However, if enough tissue causes this, it will deprive vital nutrients from other parts of the body. Additionally, the ability Continue reading >>

Treatment Of Acute Non-anion Gap Metabolic Acidosis

Treatment Of Acute Non-anion Gap Metabolic Acidosis

Treatment of acute non-anion gap metabolic acidosis Medical and Research Services VHAGLA Healthcare System, Division of Nephrology, VHAGLA Healthcare System Correspondence to: Jeffrey A. Kraut; E-mail: [email protected] Search for other works by this author on: Clinical Kidney Journal, Volume 8, Issue 1, 1 February 2015, Pages 9399, Jeffrey A. Kraut, Ira Kurtz; Treatment of acute non-anion gap metabolic acidosis, Clinical Kidney Journal, Volume 8, Issue 1, 1 February 2015, Pages 9399, Acute non-anion gap metabolic acidosis, also termed hyperchloremic acidosis, is frequently detected in seriously ill patients. The most common mechanisms leading to this acidbase disorder include loss of large quantities of base secondary to diarrhea and administration of large quantities of chloride-containing solutions in the treatment of hypovolemia and various shock states. The resultant acidic milieu can cause cellular dysfunction and contribute to poor clinical outcomes. The associated change in the chloride concentration in the distal tubule lumen might also play a role in reducing the glomerular filtration rate. Administration of base is often recommended for the treatment of acute non-anion gap acidosis. Importantly, the blood pH and/or serum bicarbonate concentration to guide the initiation of treatment has not been established for this type of metabolic acidosis; and most clinicians use guidelines derived from studies of high anion gap metabolic acidosis. Therapeutic complications resulting from base administration such as volume overload, exacerbation of hypertension and reduction in ionized calcium are likely to be as common as with high anion gap metabolic acidosis. On the other hand, exacerbation of intracellular acidosis due to the excessive generation of carbon dioxide migh Continue reading >>

Treatment Of Acidosis: Sodium Bicarbonate And Other Drugs

Treatment Of Acidosis: Sodium Bicarbonate And Other Drugs

Treatment of Acidosis: Sodium Bicarbonate and Other Drugs Lactic acidosis, defined as a lactate level > 5 mmol/1 and a pH 7.35, is far and away the most-important acidosis during critical illness and most of this discussion of acidosis treatment will focus on treatment of lactic acidosis. Even in the face of maximal supportive therapy, lactic acidosis is associated with a mortality of 60-90% [ 1 , 2 , 3 , 4 ], so physicians have long relied on treatments to lower the [H+], such as sodium bicarbonate. Less common than lactic acidosis, and much more amenable to conventional treatments, are ketoacidoses and respiratory acidosis, but these too occasionally prompt consideration of alkalinizing therapies. Lowering the [H+] in blood depends on manipulating the strong ion difference ([SID]), total concentration of non-volatile weak acid buffer (ATOT), or arterial CO2 tension (PaCO2), or raising the total concentration of weak bases, BTOT (normally sufficiently small that it can be ignored). Therefore, potential treatments include: 1. Raise [SID]: a) add strong cations: bicarbonate, carbicarb, dialysis b) remove strong anions: dichloroacetate (DCA), dialysis, thiamine, riboflavin, vasoactive drugs? 2. Lower the paCO2: raise VE or lower VD/VT or VCO2 3. Reduce ATOT: remove albumin, but very limited effect Acute Lung InjurySodium BicarbonateAcute Respiratory Distress SyndromeLactic AcidosisDiabetic Ketoacidosis These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves. This is a preview of subscription content, log in to check access Unable to display preview. Download preview PDF. Weil MH, Afifi AA (1970) Experimental and clinical studies on lactate and pyruvate as indicators of th Continue reading >>

Sodium Bicarbonate (baking Soda): Side Effects, Dosages, Treatment, Interactions, Warnings

Sodium Bicarbonate (baking Soda): Side Effects, Dosages, Treatment, Interactions, Warnings

What Is Sodium Bicarbonate and How Does It Work? Sodium bicarbonate is indicated in the treatment of metabolic acidosis which may occur in severe renal disease , uncontrolled diabetes , circulatory insufficiency due to shock or severe dehydration , extracorporeal circulation of blood , cardiac arrest and severe primary lactic acidosis . Sodium bicarbonate is further indicated in the treatment of certain drug intoxications, including barbiturates (where dissociation of the barbiturate- protein complex is desired), in poisoning by salicylates or methyl alcohol and in hemolytic reactions requiring alkalinization of the urine to diminish nephrotoxicity of hemoglobin and its breakdown products. Sodium bicarbonate also is indicated in severe diarrhea , which is often accompanied by a significant loss of bicarbonate. Treatment of metabolic acidosis should, if possible, be superimposed on measures designed to control the basic cause of the acidosis e.g., insulin in uncomplicated diabetes, blood volume restoration in shock. But since an appreciable time interval may elapse before all of the ancillary effects are brought about, bicarbonate therapy is indicated to minimize risks inherent to the acidosis itself. Vigorous bicarbonate therapy is required in any form of metabolic acidosis where a rapid increase in plasma total CO2 content is crucial e.g., cardiac arrest, circulatory insufficiency due to shock or severe dehydration, and in severe primary lactic acidosis or severe diabetic acidosis. Adult and Pediatric Dosage Forms and Strengths Dosage Considerations Should be Given as Follows: Adult, Initial: 1 mEq/kg/dose intravenous (IV) x1; base subsequent doses on results of arterial blood pH and PaCO2 as well as calculation of base deficit Repeat doses may be considered in the se Continue reading >>

Sodium Bicarbonate To Treat Severe Acidosis In The Critically Ill ((bicar-icu))

Sodium Bicarbonate To Treat Severe Acidosis In The Critically Ill ((bicar-icu))

Design: randomized multiple center clinical trial, open label Arms: intravenous 4.2% Sodium Bicarbonate vs no additional treatment Inclusion: age of 18 yo or above, critically ill patient with a SOFA score of 4 or above, lactatemia of 2mmol/l or above, with pH of 7.20 or below and PaCO2 of 45mmHg or below and bicarbonatemia of 20mmol/l or below Exclusion: single respiratory disorder (PaCO2 > 50 mmHg, Bicarbonatemia equal or higher than (PaCO2-40)/10 + 24 ; acute diarrhea, ileostomy or biliary drainage ; stage IV kidney failure or chronic dialysis ; tubular acidosis, ketoacidosis, high anion gap acids poisoning (PEG, aspirin, methanol) ; PaCO2 equal to 45mmHg or above and spontaneous breathing, pregnancy, protected patients, moribund patient (life expectancy of 48h or below) Randomization: website randomization with stratification on age, presence of sepsis at inclusion, renal failure Intervention: experimental arm: intravenous 4.2% Sodium Bicarbonate 125 to 250ml in 30min up to 1000ml/24h. The target is a plasma pH of 7.30 or above. An interim statistical analysis is planned when 200 patients will be included Evolution of the organ failure scores [TimeFrame:Day 0 to Day 28] use of SOFA score to assess the outcome 2 Duration of renal replacement therapy (days) [TimeFrame:Day 0 to Day 28] Duration of mechanical ventilation and ventilatory free days (days) [TimeFrame:Day 0 to Day 28] duration of mechanical ventilation and ventilatory free days Duration of vasopressors administration (h) [TimeFrame:Day 0 to Day 28] need for vasopressors and fluids using duration of vasopressor infusion (D0 to D28) Hospital acquired infections (incidence) [TimeFrame:Day 0 to Day 28] hospital acquired infections using United States Centers for Disease Control definitions and a dedicated docu Continue reading >>

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

The Scientific World Journal Volume 2014 (2014), Article ID 627673, 13 pages Nephrology Division, Hospital General Juan Cardona, Avenida Pardo Bazán, s/n, Ferrol, 15406 A Coruña, Spain Academic Editor: Biagio R. Di Iorio Copyright © 2014 María M. Adeva-Andany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc inter Continue reading >>

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

Volume2015(2015), Article ID605830, 7 pages The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate 1Internal Medicine Department, University Hospital of Patras, 26500 Rion, Greece 2University of Patras School of Medicine, 26500 Rion, Greece 3Intensive Care Department, Brugmann University Hospital, 1030 Brussels, Belgium 4Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA Received 22 March 2015; Revised 29 June 2015; Accepted 1 July 2015 Copyright 2015 Dimitrios Velissaris et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Sepsis and its consequences such as metabolic acidosis are resulting in increased mortality. Although correction of metabolic acidosis with sodium bicarbonate seems a reasonable approach, there is ongoing debate regarding the role of bicarbonates as a therapeutic option. Methods. We conducted a PubMed literature search in order to identify published literature related to the effects of sodium bicarbonate treatment on metabolic acidosis due to sepsis. The search included all articles published in English in the last 35 years. Results. There is ongoing debate regarding the use of bicarbonates for the treatment of acidosis in sepsis, but there is a trend towards not using bicarbonate in sepsis patients with arterial blood gas . Conclusions. Routine use of bicarbonate for treatment of severe acidemia and lactic acidosis due to sepsis is subject of controversy, and current opinion does not favor routine use of bicarbonates. However, available evidence is inconclusive, and Continue reading >>

Efficient Extra- And Intracellular Alkalinization Improves Cardiovascular Functions In Severe Lactic Acidosis Induced By Hemorrhagic Shock | Anesthesiology | Asa Publications

Efficient Extra- And Intracellular Alkalinization Improves Cardiovascular Functions In Severe Lactic Acidosis Induced By Hemorrhagic Shock | Anesthesiology | Asa Publications

Efficient Extra- and Intracellular Alkalinization Improves Cardiovascular Functions in Severe Lactic Acidosis Induced by Hemorrhagic Shock From the CHU Nancy, Service de Ranimation Mdicale Brabois, Pole Cardiovasculaire et Ranimation Mdicale, Hpital Brabois, Vandoeuvre les Nancy, France; Institut National de la Sant Et de la Recherche Mdicale (INSERM) U1116, Equipe 2, Facult de Mdecine, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (A.K., N.D., and B.L.); INSERM U1116, Equipe 2, Facult de Mdecine, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (N.S., K.I., and C.S.); and Critallographie, Rsonnance Magntique et Modlisation (CRM2), Unit Mdicale de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS), Institut Jean Barriol, Facult des Sciences et Technologies, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (J.-M.E. and S.L.). From the CHU Nancy, Service de Ranimation Mdicale Brabois, Pole Cardiovasculaire et Ranimation Mdicale, Hpital Brabois, Vandoeuvre les Nancy, France; Institut National de la Sant Et de la Recherche Mdicale (INSERM) U1116, Equipe 2, Facult de Mdecine, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (A.K., N.D., and B.L.); INSERM U1116, Equipe 2, Facult de Mdecine, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (N.S., K.I., and C.S.); and Critallographie, Rsonnance Magntique et Modlisation (CRM2), Unit Mdicale de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS), Institut Jean Barriol, Facult des Sciences et Technologies, Vandoeuvre les Nancy, France; Universit de Lorraine, Nancy, France (J.-M.E. and S.L.). From the CHU Nancy, Service de Ranimation Mdicale Brabois, Pole Cardiovasculaire et Ranimation Mdicale, Hpital Bra Continue reading >>

Metabolic Acidosis; Gap Positive

Metabolic Acidosis; Gap Positive

Metabolic acidosis is defined by low serum pH (less than 7.35-7.45) and low serum bicarbonate. It occurs by one of three major mechanisms: 1. Increased endogenous acid (i.e., lactic acidosis, diabetic ketoacidosis). 2. Decreased renal acid excretion (i.e., renal failure). In determining the underlying etiology for a metabolic acidosis, the serum anion gap must be calculated by subtracting the major measured anions (chloride and bicarbonate) from the major measured cation (sodium). If the result is greater than 12 meq/L (which is the normal value for most laboratories), the acidosis is said to be an anion gap acidosis. The expected anion gap should is lower in hypoalbuminemia and should be corrected - for each decrease of 1gm/dl in albumin, the normal anion gap should be decreased by approximately 2.5 meq/L. A. What is the differential diagnosis for this problem? Anion gap acidosis can be the result from: 1. A fall in unmeasured cations (as seen in hypomagnesemia or hypocalcemia). The most common reasons for a rise in anions are ingestions, lactic acidosis, ketoacidosis and renal failure. Ingestions of multiple different toxins can result in unmeasured anions causing a metabolic gap acidosis. Most commonly salicylate and the alcohols (methanol and ethylene glycol) can lead to severe acidosis. The inhalant toluene may also be a culprit. Lactic acidosis is the most common cause of an elevated anion gap acidosis in hospitalized patients, occurring with decreased perfusion causing relative tissue ischemia. This leads to increased lactic acid production and impaired renal excretion with resultant acid accumulation (Type A lactic acidosis). Type B lactic acidosis occurs in patients without overt tissue and can be seen in diabetics on metformin, patients with hematologic and s Continue reading >>

Sodium Bicarbonate - Journal Of Emergency Medical Services

Sodium Bicarbonate - Journal Of Emergency Medical Services

Your paramedic crew responds to a cardiac arrest in a large shopping complex. Fortunately, the patient has all the links in the chain of survival in place. Bystander CPR has been initiated, and an automated external defibrillator (AED) was in place in the shopping complex and deployed, the 9-1-1 system was accessed, and your unit arrived rapidlywithin six minutes from the time of call. As you approach, you assess the situation, interview bystanders and begin the final linkearly advanced care. For patients in cardiac arrest, the American Heart Association (AHA) has determined this provides the best opportunity for someone to survive cardiac arrest in the prehospital environment. The patient remains in ventricular fibrillation (v fib) despite several AED shocks. You gain IV access and begin pharmacological therapy. After administering epinephrine and amiodarone, you consider sodium bicarbonate as directed by protocol. You recognize that over the past several years AHA has deemphasized the use of sodium bicarbonate. But what is the controversy? When is it appropriate to give sodium bicarbonate, and are paramedics using it to its fullest advantage? Seasoned paramedics will recall giving multiple ampules of sodium bicarbonate during a cardiac arrest, but today it appears to be an afterthought. Sodium bicarbonate (NaHCO3) is used primarily to combat acidosis, although its the treatment of choice in certain cases of overdose. It works by mixing with lactic acid that forms in low perfusion states and in periods of inadequate oxygenation, such as shock and cardiac arrest. It is then converted to a form of carbonic acid that turns into carbon dioxide, and in turn, is expelled through the lungs during ventilation. Primarily, NaHCO3 works as a buffer by mixing with acids within th Continue reading >>

Acid Base In The Critically Ill - Part V - Enough With The Bicarb Already

Acid Base In The Critically Ill - Part V - Enough With The Bicarb Already

Today's topic comes from a debate I have been having with Steve Smith of the amazing EKG Blog . The main thrust of the debate started with this question Does Bicarb Fix pH if You Can't Increase Minute Ventilation? When you can adjust PaCO2 to maintain a certain value (i.e. you increase minute ventilation), bicarb will raise pH as evidenced by this animal study (Crit Care Med 1996; 24:827-834). However, if you can't blow off the CO2 then the effects on pH will not be there (J Pediatr 1977;91(2):287). In this study, NaBicarb did not correct the pH, while CarbiCarb did (Carbicarb: an effective substitute for NaHCO3 for the treatment of acidosis. (Surgery 102:835839). This review article recommends against bicarb for permissive hypercapnia (Intensive Care Med (2004) 30:347356). This study furthers the idea that NaBicarb is not all that great in closed systems (J Pediatr 1972;80(4):671) and then this discussion explores all of the biochemical reasons why administering bicarbonate as a rapid push in a closed system is a bad idea ( J Pediatr. 1972 Apr;80(4):681-2 .). Here is a quote from another review article (Anesthesiology 1990;72(6):1064): The key concept in the equation [above] is that pH is not related to the absolute value of either bicarbonate concentration nor PCo2, but rather to their ratio. When exogenous bicarbonate is administered during acidemia, bicarbonate reacts with hydrogen ions to form carbonic acid. Physicochemical equilibrium is shifted, favoring dissociation of carbonic acid to C02 and water. C02 partial pressure increases. The degree of alkaliniza- tion resulting from increased [HC03] is limited by the rise in Pco2* In (open) systems where increases in PCo2 are prevented (by ventilation) alkalination occurs. When CO2 cannot be eliminated, the pH of the Continue reading >>

More in ketosis