diabetestalk.net

In A State Of Ketoacidosis

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

A Rare Cause Of Metabolic Acidosis: Ketoacidosis In A Non-diabetic Lactating Woman

A Rare Cause Of Metabolic Acidosis: Ketoacidosis In A Non-diabetic Lactating Woman

Go to: Case presentation A 27-year-old lady, 8 weeks post-partum, presented with a four-day history of nausea and vomiting. She described a variety of non-specific symptoms including general malaise, polydipsia, polyuria, fatigue, headache and generalised body aching. Due to her condition, she had been unable to tolerate any food intake in the preceding four days. She had no significant past medical history and took no prescribed medications or recreational substances. She did not drink excessive quantities of alcohol. The patient had strictly followed a low carbohydrate diet for two years. She described herself as being in a state of ‘safe ketosis’ as a result of her diet. Her approximate daily macronutrient targets were as follows: carbohydrate 10%, fat 70% and protein 20%. Her average carbohydrate intake was 20 g per day. Due to her malaise in the days preceding admission, her carbohydrate intake had been reduced to 15–17 g per day. Her pregnancy had been uncomplicated. She had a normal vaginal delivery of her child and had been well post-partum. She had been exclusively breastfeeding her child since birth. The child had been healthy until the preceding week when he contracted rotavirus. This illness had resolved but the child was unsettled in the day preceding the admission of the patient. The patient had unremarkable physical observations with a respiratory rate of 20 breaths per minute, oxygen saturations 100% on room air, heart rate 82 beats per minute, blood pressure 115/57 mmHg and she was apyrexial with a temperature of 35.6°C. Her capillary blood glucose was 6.7 mmol/L. The patient was mildly disorientated with no focal neurological finding. Her abdomen was soft with mild right upper quadrant tenderness. Her BMI was 23.0 kg/m2. Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitrogen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocardiography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in children. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symptoms to prevent it. Patient education should include information on how to adjust insulin during times of illness and how to monitor glucose and ketone levels, as well as i Continue reading >>

Why Dka & Nutritional Ketosis Are Not The Same

Why Dka & Nutritional Ketosis Are Not The Same

There’s a very common misconception and general misunderstanding around ketones. Specifically, the misunderstandings lie in the areas of: ketones that are produced in low-carb diets of generally less than 50 grams of carbs per day, which is low enough to put a person in a state of “nutritional ketosis” ketones that are produced when a diabetic is in a state of “diabetic ketoacidosis” (DKA) and lastly, there are “starvation ketones” and “illness-induced ketones” The fact is they are very different. DKA is a dangerous state of ketosis that can easily land a diabetic in the hospital and is life-threatening. Meanwhile, “nutritional ketosis” is the result of a nutritional approach that both non-diabetics and diabetics can safely achieve through low-carb nutrition. Diabetic Ketoacidosis vs. Nutritional Ketosis Ryan Attar (soon to be Ryan Attar, ND) helps explain the science and actual human physiology behind these different types of ketone production. Ryan is currently studying to become a Doctor of Naturopathic Medicine in Connecticut and also pursuing a Masters Degree in Human Nutrition. He has interned under the supervision of the very well-known diabetes doc, Dr. Bernstein. Ryan explains: Diabetic Ketoacidosis: “Diabetic Ketoacidosis (DKA), is a very dangerous state where an individual with uncontrolled diabetes is effectively starving due to lack of insulin. Insulin brings glucose into our cells and without it the body switches to ketones. Our brain can function off either glucose or fat and ketones. Ketones are a breakdown of fat and amino acids that can travel through the blood to various tissues to be utilized for fuel.” “In normal individuals, or those with well controlled diabetes, insulin acts to cancel the feedback loop and slow and sto Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Ketosis Vs. Ketoacidosis (dka): What Is The Difference?

Ketosis Vs. Ketoacidosis (dka): What Is The Difference?

Let’s break it down so that you can understand exactly what ketosis is and how it differs from ketoacidosis. But the states they refer to are nothing alike. In this case, maybe mistakes are understandable. Many people who believe that ketosis is dangerous are mixing it up with another state called "ketoacidosis." The two words do sound very similar. And some people simply make mistakes. Profit motives tend to muddy up the works when it comes to getting clear, factual information about your health. Well, there are a lot of individuals and companies which all have their own goals and motivations. Where do these misperceptions come from? Here’s the thing though … that is all misinformation. You then Googled something like, "low carb dangerous" and found a list of link-bait articles informing you that low-carb is a ketogenic diet, and ketosis is a dangerous metabolic state which can be fatal. And then maybe someone said something to you like, "What are you thinking? Low-carb is a dangerous diet." If you are thinking about starting a low-carb diet, maybe you have mentioned it to some of your family or friends. By the time you finish reading this article, you will understand why low-carb is a safe diet. Continue reading >>

Diabetes With Ketone Bodies In Dogs

Diabetes With Ketone Bodies In Dogs

Studies show that female dogs (particularly non-spayed) are more prone to DKA, as are older canines. Diabetic ketoacidosis is best classified through the presence of ketones that exist in the liver, which are directly correlated to the lack of insulin being produced in the body. This is a very serious complication, requiring immediate veterinary intervention. Although a number of dogs can be affected mildly, the majority are very ill. Some dogs will not recover despite treatment, and concurrent disease has been documented in 70% of canines diagnosed with DKA. Diabetes with ketone bodies is also described in veterinary terms as diabetic ketoacidosis or DKA. It is a severe complication of diabetes mellitus. Excess ketone bodies result in acidosis and electrolyte abnormalities, which can lead to a crisis situation for your dog. If left in an untreated state, this condition can and will be fatal. Some dogs who are suffering from diabetic ketoacidosis may present as systemically well. Others will show severe illness. Symptoms may be seen as listed below: Change in appetite (either increase or decrease) Increased thirst Frequent urination Vomiting Abdominal pain Mental dullness Coughing Fatigue or weakness Weight loss Sometimes sweet smelling breath is evident Slow, deep respiration. There may also be other symptoms present that accompany diseases that can trigger DKA, such as hypothyroidism or Cushing’s disease. While some dogs may live fairly normal lives with this condition before it is diagnosed, most canines who become sick will do so within a week of the start of the illness. There are four influences that can bring on DKA: Fasting Insulin deficiency as a result of unknown and untreated diabetes, or insulin deficiency due to an underlying disease that in turn exacerba Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Question: A Patient Presents In A State Of Ketoacidosis (a Type Of Metabolic Acidosis In Which The Ph Of Th...

Question: A Patient Presents In A State Of Ketoacidosis (a Type Of Metabolic Acidosis In Which The Ph Of Th...

Answer: The symptoms of metabolic acidosis include weakness, malaise, and headache. As the acid level goes up these symptoms progress to stupor, unconsciousness, coma, and ... view the full answer Continue reading >>

Ketoacidosis Versus Ketosis

Ketoacidosis Versus Ketosis

Some medical professionals confuse ketoacidosis, an extremely abnormal form of ketosis, with the normal benign ketosis associated with ketogenic diets and fasting states in the body. They will then tell you that ketosis is dangerous. Testing Laboratory Microbiology - Air Quality - Mold Asbestos - Environmental - Lead emsl.com Ketosis is NOT Ketoacidosis The difference between the two conditions is a matter of volume and flow rate*: Benign nutritional ketosis is a controlled, insulin regulated process which results in a mild release of fatty acids and ketone body production in response to either a fast from food, or a reduction in carbohydrate intake. Ketoacidosis is driven by a lack of insulin in the body. Without insulin, blood sugar rises to high levels and stored fat streams from fat cells. This excess amount of fat metabolism results in the production of abnormal quantities of ketones. The combination of high blood sugar and high ketone levels can upset the normal acid/base balance in the blood and become dangerous. In order to reach a state of ketoacidosis, insulin levels must be so low that the regulation of blood sugar and fatty acid flow is impaired. *See this reference paper. Here's a table of the actual numbers to show the differences in magnitude: Body Condition Quantity of Ketones Being Produced After a meal: 0.1 mmol/L Overnight Fast: 0.3 mmol/L Ketogenic Diet (Nutritional ketosis): 1-8 mmol/L >20 Days Fasting: 10 mmol/L Uncontrolled Diabetes (Ketoacidosis): >20 mmol/L Here's a more detailed explanation: Fact 1: Every human body maintains the blood and cellular fluids within a very narrow range between being too acidic (low pH) and too basic (high pH). If the blood pH gets out of the normal range, either too low or too high, big problems happen. Fact 2: The Continue reading >>

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

State of Ohio Overview of the diabetic ketoacidosis (DKA)/ hyperglycemic hyperosmolar state (HHS) episode of care CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. December 23, 2016 | 1 Overview of the diabetic ketoacidosis (DKA)/hyperglycemic hyperosmolar state (HHS) episode of care 1. CLINICAL OVERVIEW AND RATIONALE FOR DEVELOPMENT OF THE DKA/HHS EPISODE 1.1 Rationale for development of the DKA/HHS episode of care DKA and HHS are among the most serious acute complications of diabetes. Clinically, DKA and HHS differ only by the degree of dehydration and the severity of metabolic acidosis. Both require prompt diagnosis and treatment. According to the American Diabetes Association, DKA accounts for more than $1 of every $4 spent on direct care for adult patients with Type I diabetes, and $1 of every $2 spent on patients experiencing multiple morbidities.1 In the United States, approximately 145,000 hospitalizations occur for DKA each year with an average cost of $17,500 per patient.2 The direct and indirect total annual cost of hospitalizations is estimated to be $2.4 billion.3 While the hospitalization rate for HHS is less than one percent of all diabetes-related admissions, death occurs in an estimated 5-16 percent of these patients, a rate 10 times higher than that of DKA.4 The complex pathophysiology of both DKA and HHS requires careful selection of approaches to restore glycemic control and deficiencies in intravascular volume and electrolytes. Appropriate treatment also includes the diagnosis and management of the underlying precipitating event. Death in patients with DKA/HHS is typically caused by the und Continue reading >>

Ketoacidosis

Ketoacidosis

Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate. Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.[1] Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis. Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover.[2] Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone. Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia. Cause[edit] Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.[3] In diabetic ketoacidosis, a high concentration of ketone bodies is usually accomp Continue reading >>

Management Of Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar State In Adults

Management Of Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar State In Adults

Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes associated with high mortality rate if not efficiently and effectively treated. Both entities are characterized by insulinopenia, hyperglycemia and dehydration. DKA and HHS are two serious complications of diabetes associated with significant mortality and a high healthcare costs. The overall DKA mortality in the US is less than 1%, but a rate higher than 5% is reported in the elderly and in patients with concomitant life-threatening illnesses. Mortality in patients with HHS is reported between 5% and 16%, which is about 10 times higher than the mortality in patients with DKA. Objectives of management include restoration circulatory volume and tissue perfusion, resolution of hyperglycemia, correction of electrolyte imbalance and increased ketogenesis. Continue reading >>

More in ketosis