diabetestalk.net

Hyperkalemia In Dka

Share on facebook

What is DIABETIC KETOACIDOSIS? What does DIABETIC KETOACIDOSIS mean? DIABETIC KETOACIDOSIS meaning - DIABETIC KETOACIDOSIS definition - DIABETIC KETOACIDOSIS explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus. Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness. A person's breath may develop a specific smell. Onset of symptoms is usually rapid. In some cases people may not realize they previously had diabetes. DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances. Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids. DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies. DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine. The primary treatment of DKA is with intravenous fluids and insulin. Depending on the severity, insulin may be given intravenously or by injection under the skin. Usually potassium is also needed to prevent the development of low blood potassium. Throughout treatment blood sugar and potassium levels should be regularly checked. Antibiotics may be required in those with an underlying infection. In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended. Rates of DKA vary around the world. About 4% of people with type 1 diabetes in United Kingdom develop DKA a year, while in Malaysia the condition affects about 25% a year. DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost universally fatal. The risk of death with adequate and timely treatment is currently around 1–4%. Up to 1% of children with DKA develop a complication known as cerebral edema. The symptoms of an episode of diabetic ketoacidosis usually evolve over a period of about 24 hours. Predominant symptoms are nausea and vomiting, pronounced thirst, excessive urine production and abdominal pain that may be severe. Those who measure their glucose levels themselves may notice hyperglycemia (high blood sugar levels). In severe DKA, breathing becomes labored and of a deep, gasping character (a state referred to as "Kussmaul respiration"). The abdomen may be tender to the point that an acute abdomen may be suspected, such as acute pancreatitis, appendicitis or gastrointestinal perforation. Coffee ground vomiting (vomiting of altered blood) occurs in a minority of people; this tends to originate from erosion of the esophagus. In severe DKA, there may be confusion, lethargy, stupor or even coma (a marked decrease in the level of consciousness). On physical examination there is usually clinical evidence of dehydration, such as a dry mouth and decreased skin turgor. If the dehydration is profound enough to cause a decrease in the circulating blood volume, tachycardia (a fast heart rate) and low blood pressure may be observed. Often, a "ketotic" odor is present, which is often described as "fruity", often compared to the smell of pear drops whose scent is a ketone. If Kussmaul respiration is present, this is reflected in an increased respiratory rate.....

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Hodaka Yamada1, Shunsuke Funazaki1, Masafumi Kakei1, Kazuo Hara1 and San-e Ishikawa2[1] Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan [2] Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara, Japan Summary Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuati Continue reading >>

Share on facebook

Popular Questions

  1. nurseprnRN

    The hypokalemia comes when the patient gets treated with insulin, driving the glucose and K+ into the cells. The kidneys can't (and won't) move so much out through urine with the excess glucose to make for hypokalemia.

  2. Esme12

    There can be a brief period of hypoglycemia in the early stages of an elevated blood sugar (polyuria)....but by the time "ketoacidosis" sets in the Serum potassium is elevated but the cellular potassium is depleted (all that shifting that goes on)
    Diabetic ketoacidosis

  3. April2152

    So pretty much what we would observe clinically is hyperkalemia because the osmotic duiresis does not move serum potassium significantly?

  4. -> Continue reading
read more
Share on facebook

The effect of hyperkalemia on Resting Membrane Potential. 1. Introduction: a. Hyperkalemia: Increased K+ level in the blood Increase extracellular potassium level. b. The Equilibrium potential for K+ is -90 mV. c. The resting membrane potential is maintained by the ion that has the highest conductance through its membrane during resting. In this case, K+ has the highest conductance at rest. Therefore, K+ electrochemical gradient has the most effect the membrane potential. The resting membrane potential tends to move towards K+ equilibrium potential. d. Normally, there are more potassium inside the cell (more intracellular potassium) than they are outside of the cell (less extracellular potassium) e. In this video, I will talk about the resting membrane potential of cardiac myocytes with is around -90mV. The high conductance of K+ through the leak channels in its membrane brings the resting membrane potential towards its equilibrium potential. 1. So on the left is the normal cell. As you can see that there are leak channels on the cell membrane for both Na+ and K+, however, there are much more leak channels K+ than for Na+. Therefore, the conductance for K+ is much greater than for Na+. For this reason, K+ is the main ion that is used to maintain resting membrane potential. a. Under normal condition, resting membrane potential is around -90mV and there are more potassium inside the cell (more intracellular K+) than outside of the cell. K+ is freely moving into and out of the cell through the leak channel to maintain this electrochemical gradient at resting and there are no net movement of the ion into or out of the cell (intra or extracellularly). 2. However, when there is hyperkalemia. An increase level of potassium in the blood, which means that there is an increased level of potassium outside of the cell (extracellularly). Now the chemical gradient for K+ has been changed, and that change cause a change in the resting membrane potential. Since we have disrupted the chemical equilibrium for K+ ion, with more K+ outside the cell the net flow of K+ will be into the cell until a new electrochemical gradient has been established. Thus, there will be more K+ inside the cell. More positive ion inside the cell causes the cell to become less negative (depolarize). Under normal condition, the resting membrane potential of cardiac myocyte is around -90mV. A patient with hyperkalemia, their new resting membrane potential maybe -85mV or -80mV, the cells have been depolarized (less negative) because K+ is trapped inside. ======================= I tried my best to explain these concepts to the best of my knowledge and made it as simple as possible. I hope that you might find them helpful while you are reviewing your materials for your steps! Good luck to you all! ====================== DISCLAIMER: THE AUTHOR DISCLAIMS ANY LIABILITY, LOSS, INJURY, OR DAMAGE INCURRED AS A CONSEQUENCE DIRECTLY OR INDIRECTLY OF THE USE AND APPLICATION OF ANY OF THE CONTENT AND MATERIAL CONTAINED IN THIS VIDEO. ALTHOUGH THE INFORMATION IN THIS VIDEO HAS BEEN CAREFULLY REVIEWED FOR CORRECTNESS, THE AUTHOR CANNOT ACCEPT ANY RESPONSIBILITY FOR ANY ERRORS OR OMISSIONS THAT MAY BE MADE. THE AUTHOR MAKES NO WARRANTY. EXPRESS OR IMPLIED. AS TO THE COMPLETENESS, CURRENCY OR ACCURACY OF THE CONTENTS OF THIS VIDEO. THE INFORMATION CONTAINED IN THIS VIDEO SHOULD NOT BE CONSTRUED AS SPECIFIC INSTRUCTIONS FOR INDIVIDUAL PATIENTS, MANUFACTURER'S PRODUCT INFORMATION AND PACKAGE INSERTS SHOULD BE REVIEWED FOR CURRENT INFORMATION. INCLUDING CONTRAINDICATIONS. DOSAGES. AND PRECAUTIONS. USMLEAID123. This is video is made and uploaded exclusively for USMLEAID123, any reuploading is prohibited and will be reported to Youtube as copyright infringement.

Diabetic Ketoacidosis-induced Hyperkalemia

Abstract We report the biochemical data of 22 hospital admissions because of untreated diabetic ketoacidosis. Fifty percent of admitted patients showed an initial serum potassium between 4.6 and 6.0 mEq/1 whereas severe hyperkalemia (value>6.1 mEq/l) occurred in 32%. Initial potassium levels show a slight negative correlation with pH but a stronger correlation (p<0.001) was found between the initial serum potassium and glucose values. We suggest that hyperglycemia due to insulinopenia must be one of the factors in the pathogenesis of this hyperkalemia. Preview Unable to display preview. Download preview PDF. Continue reading >>

Share on facebook

Popular Questions

  1. metalmd06

    Does acute DKA cause hyperkalemia, or is the potassium normal or low due to osmotic diuresis? I get the acute affect of metabolic acidosis on potassium (K+ shifts from intracellular to extracellular compartments). According to MedEssentials, the initial response (<24 hours) is increased serum potassium. The chronic effect occuring within 24 hours is a compensatory increase in Aldosterone that normalizes or ultimatley decreases the serum K+. Then it says on another page that because of osmotic diuresis, there is K+ wasting with DKA. On top of that, I had a question about a diabetic patient in DKA with signs of hyperkalemia. Needless to say, I'm a bit confused. Any help is appreciated.

  2. FutureDoc4

    I remember this being a tricky point:
    1) DKA leads to a decreased TOTAL body K+ (due to diuresis) (increase urine flow, increase K+ loss)
    2) Like you said, during DKA, acidosis causes an exchange of H+/K+ leading to hyperkalemia.
    So, TOTAL body K+ is low, but the patient presents with hyperkalemia. Why is this important? Give, insulin, pushes the K+ back into the cells and can quickly precipitate hypokalemia and (which we all know is bad). Hope that is helpful.

  3. Cooolguy

    DKA-->Anion gap M. Acidosis-->K+ shift to extracellular component--> hyperkalemia-->symptoms and signs
    DKA--> increased osmoles-->Osmotic diuresis-->loss of K+ in urine-->decreased total body K+ (because more has been seeped from the cells)
    --dont confuse total body K+ with EC K+
    Note: osmotic diuresis also causes polyuria, ketonuria, glycosuria, and loss of Na+ in urine--> Hyponatremia
    DKA tx: Insulin (helps put K+ back into cells), and K+ (to replenish the low total potassium
    Hope it helps

  4. -> Continue reading
read more
Share on facebook

This animated video presentation is about potassium regulation and the pathophsyiology of hyperkalemia to make it easy to follow and understand the causes and the management of Hyperkalemia. email : [email protected]

Hyperkalemia In Diabetic Ketoacidosis - Sciencedirect

Volume 299, Issue 3 , March 1990, Pages 164-169 Author links open overlay panel MilfordFulopMD Get rights and content Patients with diabetic ketoacidosis tend to have somewhat elevated serum K+ concentrations despite decreased body K+ content. The hyperkalemia was previously attributed mainly to acidemia. However, recent studies have suggested that organic acidemias (such as that produced by infusing beta-hydroxybutyric acid) may not cause hyperkalemia. To learn which, if any, routinely measured biochemical indices might correlate with the finding of hyperkalemia in diabetic ketoacidosis, we analyzed the initial pre-treatment values in 131 episodes in 91 patients. Serum K+correlated independently and significantly (p < 0.001) with blood pH (r = 0.39), serum urea N (r = 0.38) and the anion gap (r = 0.41). The mean serum K+ among the men was 5.55 mmol/ 1, significantly higher than among the women, 5.09 mmol/1 (p < 0.005). Twelve of the 16 patients with serum K+ 6.5 mmol/1 were men, as were all eight patients with serum K+ 7.0 mmol/1. Those differences paralleled a significantly higher mean serum urea N concentration among the men (15.1 mmol/1) than the women (11.2 mmol/1, p < 0.01). Continue reading >>

Share on facebook

Popular Questions

  1. nurseprnRN

    The hypokalemia comes when the patient gets treated with insulin, driving the glucose and K+ into the cells. The kidneys can't (and won't) move so much out through urine with the excess glucose to make for hypokalemia.

  2. Esme12

    There can be a brief period of hypoglycemia in the early stages of an elevated blood sugar (polyuria)....but by the time "ketoacidosis" sets in the Serum potassium is elevated but the cellular potassium is depleted (all that shifting that goes on)
    Diabetic ketoacidosis

  3. April2152

    So pretty much what we would observe clinically is hyperkalemia because the osmotic duiresis does not move serum potassium significantly?

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Dka Hyperkalemia Or Hypokalemia

    Author: Osama Hamdy, MD, PhD; Chief Editor: Romesh Khardori, MD, PhD, FACP more... Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. The most common early symptoms of DKA are the ...

    ketosis Apr 14, 2018
  • Why Do You Get Hyperkalemia In Dka?

    Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuri ...

    ketosis Dec 30, 2017
  • Dka Hypokalemia Or Hyperkalemia

    Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic ...

    ketosis Dec 30, 2017
  • Management Of Hyperkalemia In Dka

    Dear Editor, I have a brief comment on the informative ‘Lesson of the week’ by Moulik and colleagues, describing an association between hyperkalaemia and an ECG pattern suggesting acute myocardial infarction in a patient with diabetic ketoacidosis (DKA). One of the mechanisms of hyperkalaemia in DKA stated at the beginning of the Discussion is not strictly correct. It is inorganic acids, and not organic acids (including lactic acid), that cau ...

    diabetes Feb 24, 2018
  • Paradoxical Hyperkalemia In Dka

    Pediatric Diabetic Ketoacidosis Authors: Katia M. Lugo-Enriquez, MD, FACEP, Faculty, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Nick Passafiume, MD, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Peer Reviewer: Richard A. Brodsky, MD, Pediatric Emergency Medicine, St. Christopher's Hospital for Children, Assistant Professor, Drexel University, Philadelphia, PA. Children with diabetes, especially type ...

    ketosis Jan 6, 2018
  • Hyperkalemia In Dka

    Diabetic ketoacidosis is a complicated condition which can be caused if you are unable to effectively treat and manage your diabetes. In this condition, ketones are accumulated in the blood which can adversely affect your health. It can be a fatal condition and may cause a lot of complications. One such complication in diabetic ketoacidosis is the onset of hyperkalemia or the high levels of potassium in the blood. In this article, we shall try to ...

    ketosis Mar 31, 2018

More in ketosis