diabetestalk.net

How Long Does Lactic Acidosis Last

Lactic Acidosis

Lactic Acidosis

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. Copyright 1997-2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM Health Solutions. Continue reading >>

Glyburide And Metformin (oral Route)

Glyburide And Metformin (oral Route)

Precautions Drug information provided by: Micromedex It is very important that your doctor check your progress at regular visits to make sure this medicine is working properly. Blood tests may be needed to check for unwanted effects. Under certain conditions, too much metformin can cause lactic acidosis. The symptoms of lactic acidosis are severe and quick to appear. They usually occur when other health problems not related to the medicine are present and very severe, such as a heart attack or kidney failure. The symptoms of lactic acidosis include abdominal or stomach discomfort; decreased appetite; diarrhea; fast, shallow breathing; a general feeling of discomfort; muscle pain or cramping; and unusual sleepiness, tiredness, or weakness. If you have any symptoms of lactic acidosis, get emergency medical help right away. It is very important to carefully follow any instructions from your health care team about: Alcohol—Drinking alcohol may cause severe low blood sugar. Discuss this with your health care team. Other medicines—Do not take other medicines unless they have been discussed with your doctor. This especially includes nonprescription medicines such as aspirin, and medicines for appetite control, asthma, colds, cough, hay fever, or sinus problems. Counseling—Other family members need to learn how to prevent side effects or help with side effects if they occur. Also, patients with diabetes may need special counseling about diabetes medicine dosing changes that might occur because of lifestyle changes, such as changes in exercise and diet. Furthermore, counseling on contraception and pregnancy may be needed because of the problems that can occur in patients with diabetes during pregnancy. Travel—Keep your recent prescription and your medical history with yo Continue reading >>

Lactic Acidosis And Exercise: What You Need To Know

Lactic Acidosis And Exercise: What You Need To Know

Muscle ache, burning, rapid breathing, nausea, stomach pain: If you've experienced the unpleasant feeling of lactic acidosis, you likely remember it. It's temporary. It happens when too much acid builds up in your bloodstream. The most common reason it happens is intense exercise. Symptoms The symptoms may include a burning feeling in your muscles, cramps, nausea, weakness, and feeling exhausted. It's your body's way to tell you to stop what you're doing The symptoms happen in the moment. The soreness you sometimes feel in your muscles a day or two after an intense workout isn't from lactic acidosis. It's your muscles recovering from the workout you gave them. Intense Exercise. When you exercise, your body uses oxygen to break down glucose for energy. During intense exercise, there may not be enough oxygen available to complete the process, so a substance called lactate is made. Your body can convert this lactate to energy without using oxygen. But this lactate or lactic acid can build up in your bloodstream faster than you can burn it off. The point when lactic acid starts to build up is called the "lactate threshold." Some medical conditions can also bring on lactic acidosis, including: Vitamin B deficiency Shock Some drugs, including metformin, a drug used to treat diabetes, and all nucleoside reverse transcriptase inhibitor (NRTI) drugs used to treat HIV/AIDS can cause lactic acidosis. If you are on any of these medications and have any symptoms of lactic acidosis, get medical help immediately. Preventing Lactic Acidosis Begin any exercise routine gradually. Pace yourself. Don't go from being a couch potato to trying to run a marathon in a week. Start with an aerobic exercise like running or fast walking. You can build up your pace and distance slowly. Increase the Continue reading >>

Acute Lactic Acidosis

Acute Lactic Acidosis

Author: Bret A Nicks, MD, MHA; Chief Editor: Romesh Khardori, MD, PhD, FACP more... Metabolic acidosis is defined as a state of decreased systemic pH resulting from either a primary increase in hydrogen ion (H+) or a reduction in bicarbonate (HCO3-) concentrations. In the acute state, respiratory compensation of acidosis occurs by hyperventilation resulting in a relative reduction in PaCO2. Chronically, renal compensation occurs by means of reabsorption of HCO3. [ 1 , 2 ] Acidosis arises from an increased production of acids, a loss of alkali, or a decreased renal excretion of acids. The underlying etiology of metabolic acidosis is classically categorized into those that cause an elevated anion gap (AG) (see the Anion Gap calculator) and those that do not. Lactic acidosis, identified by a state of acidosis and an elevated plasma lactate concentration is one type of anion gap metabolic acidosis and may result from numerous conditions. [ 2 , 3 , 4 ] It remains the most common cause of metabolic acidosis in hospitalized patients. The normal blood lactate concentration in unstressed patients is0.5-1 mmol/L. Patients with critical illness can be considered to have normal lactate concentrations of less than 2 mmol/L. Hyperlactatemia is defined as a mild to moderate persistent increase in blood lactate concentration (2-4 mmol/L) without metabolic acidosis, whereas lactic acidosis is characterized by persistently increased blood lactate levels (usually >4-5 mmol/L) in association with metabolic acidosis. [ 1 , 5 ] Elevated lactate levels, while typically thought of as a marker of inadequate tissue perfusion with concurrent shift toward increased anaerobic metabolism, can be present in patients in whom systemic hypoperfusion is not present and therefore should be considered wit Continue reading >>

Severe Lactic Acidosis Reversed By Thiamine Within 24 Hours

Severe Lactic Acidosis Reversed By Thiamine Within 24 Hours

Severe lactic acidosis reversed by thiamine within 24 hours 1Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria Karin Amrein: [email protected] ; Werner Ribitsch: [email protected] ; Ronald Otto: [email protected] ; Harald C Worm: [email protected] ; Rudolf E Stauber: [email protected] This article has been cited by other articles in PMC. Thiamine is a water-soluble vitamin that plays a pivotal role in carbohydrate metabolism. In acute deficiency, pyruvate accumulates and is metabolized to lactate, and chronic deficiency may cause polyneuropathy and Wernicke encephalopathy. Classic symptoms include mental status change, ophthalmoplegia, and ataxia but are present in only a few patients [ 1 ]. Critically ill patients are prone to thiamine deficiency because of preexistent malnutrition, increased consumption in high-carbohydrate nutrition, and accelerated clearance in renal replacement. In retrospective [ 2 ] and prospective [ 3 , 4 ] studies, a substantial prevalence of thiamine deficiency has been described in both adult (10% to 20%) and pediatric (28%) patients. Thiamine deficiency may become clinically evident in any type of malnutrition that outlasts thiamine body stores (2 to 3 weeks), including alcoholism, bariatric surgery, or hyperemesis gravidarum, and results in high morbidity and mortality if untreated [ 1 ]. We report the case of a 56-year-old man with profound lactic acidosis that resolved rapidly after thiamine infusion. He was admitted because of a decreased level of consciousness (Glasgow Coma Scale score of 6). Vital signs, including blood pressure, heart rate, and oxygen saturation, were normal. Besides reporting regular alcohol consumption, relatives reported recen Continue reading >>

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic acidosis occurs when the body produces too much lactic acid and cannot metabolize it quickly enough. The condition can be a medical emergency. The onset of lactic acidosis might be rapid and occur within minutes or hours, or gradual, happening over a period of days. The best way to treat lactic acidosis is to find out what has caused it. Untreated lactic acidosis can result in severe and life-threatening complications. In some instances, these can escalate rapidly. It is not necessarily a medical emergency when caused by over-exercising. The prognosis for lactic acidosis will depend on its underlying cause. A blood test is used to diagnose the condition. Lactic acidosis symptoms that may indicate a medical emergency include a rapid heart rate and disorientaiton. Typically, symptoms of lactic acidosis do not stand out as distinct on their own but can be indicative of a variety of health issues. However, some symptoms known to occur in lactic acidosis indicate a medical emergency. Lactic acidosis can occur in people whose kidneys are unable to get rid of excess acid. Even when not related to just a kidney condition, some people's bodies make too much lactic acid and are unable to balance it out. Diabetes increases the risk of developing lactic acidosis. Lactic acidosis may develop in people with type 1 and 2 diabetes mellitus , especially if their diabetes is not well controlled. There have been reports of lactic acidosis in people who take metformin, which is a standard non-insulin medication for treating type 2 diabetes mellitus. However, the incidence is low, with equal to or less than 10 cases per 100,000 patient-years of using the drug, according to a 2014 report in the journal Metabolism. The incidence of lactic acidosis is higher in people with diabetes who Continue reading >>

Lactic Acidosis

Lactic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. Description Lactic acidosis is a form of metabolic acidosis due to the inadequate clearance of lactic acid from the blood. Lactate is a byproduct of anaerobic respiration and is normally cleared from the blood by the liver, kidney and skeletal muscle. Lactic acidosis occurs when the body's buffering systems are overloaded and tends to cause a pH of ≤7.25 with plasma lactate ≥5 mmol/L. It is usually caused by a state of tissue hypoperfusion and/or hypoxia. This causes pyruvic acid to be preferentially converted to lactate during anaerobic respiration. Hyperlactataemia is defined as plasma lactate >2 mmol/L. Classification Cohen and Woods devised the following system in 1976 and it is still widely used:[1] Type A: lactic acidosis occurs with clinical evidence of tissue hypoperfusion or hypoxia. Type B: lactic acidosis occurs without clinical evidence of tissue hypoperfusion or hypoxia. It is further subdivided into: Type B1: due to underlying disease. Type B2: due to effects of drugs or toxins. Type B3: due to inborn or acquired errors of metabolism. Epidemiology The prevalence is very difficult to estimate, as it occurs in critically ill patients, who are not often suitable subjects for research. It is certainly a common occurrence in patients in high-dependency areas of hospitals.[2] The incidence of symptomatic hyperlactataemia appears to be rising as a consequence of the use of antiretroviral therapy to treat HIV infection. It appears to increase in those taking stavudine (d4T) regimens.[3] Causes of lactic acid Continue reading >>

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic Acidosis: Symptoms, Causes, and Treatment Lactic acidosis is a physiological condition that occurs due to an increase of lactic acid in the blood. This causes the blood pH to become too acidic. To know more about its symptoms, causes, and treatment, read on... Lactate is a by-product formed when glucose is broken down aerobically by the cell's mitochondria - the power house of the cell. When the body or a region of the body is deprived of oxygen, it leads to tissue hypoxia. This results in anaerobic breakdown of the glucose in the cells. The end product of this reaction is lactic acid. The blood pH becomes too acidic due to presence of excess lactic acid in the tissues. Thus, leading to lactic acidosis, a rare condition. People who suffer from this condition may develop serious complications, especially when they suffer from certain risk factors. In extreme cases, it may also lead to death. The body generates most of its energy aerobically, that is, by using oxygen. Under normal circumstances, the cells break down glucose by a process called glycolysis, to generate pyruvate, which is further broken down by an aerobic pathway for more energy. However, under certain conditions, like trying to outrun a hungry lion or pumping iron to increase triceps and biceps, our body requires more energy. The requirement of energy becomes inversely proportional to the body's capacity to deliver the required amount of oxygen. Thus, pyruvate is converted to lactate, which allows glucose production and energy is produced. Within one or two minutes the lactic acid level increases in the blood. Thus, leading to this condition that occurs due to buildup of lactic acid in the muscles and blood. Most of the time after a strenuous exercise, running or due to some other activity, one may Continue reading >>

Acid Buildup In The Muscles

Acid Buildup In The Muscles

Lactic acid, or lactate, is a substance produced in your muscles when you need to move quickly or engage in certain other types of physical exertion. The buildup of this substance triggers pain in active muscles and decreases your chances of causing long-term muscle damage. After muscle exertion ends, your body quickly removes lactic acid from your system. Video of the Day Lactic Acid Buildup When you perform most forms of aerobic exercise, your body fuels your efforts with extra oxygen provided by increases in your breathing and blood flow. However, if you need to sprint, move quickly or lift heavy weights, your body fuels your efforts with glucose, a pure sugar substance derived from carbohydrates in your diet. To gain energy from glucose, your body breaks it down into another substance called pyruvate. Pyruvate is turned into lactic acid, which allows your muscles to continue working for roughly one to three minutes as it quickly builds up. Lactic Acid Effects When lactic acid builds up in your muscles, the increased acidity levels trigger a kind of feedback loop that disrupts efficient energy production. In turn, this disruption triggers a burning sensation inside your active muscles. Taken as a whole, this process acts as a natural safeguard for your body by stopping your efforts before you permanently damage your muscle tissue. Once you stop exerting yourself, your muscles go back to producing pyruvate. When you don’t require pyruvate to burn glucose, your body uses the substance to help you burn oxygen and recover from your muscular efforts. If too much lactic acid builds up in your bloodstream, you can develop a medical condition called lactic acidosis. Symptoms of this disorder include weakness and nausea. In addition to intense physical exertion, potential c Continue reading >>

Faq Acidosis, Lactic

Faq Acidosis, Lactic

how can we change anti retro viral drugs for a patient who has developed lactic acidosis while on AZT/3TC,NVP? Lactic acidosis is a condition caused by the buildup of lactic acid in the body. It leads to acidification of the blood (acidosis), and is considered a distinct form of metabolic acidosis. The cells produce lactic acid when they use glucose for energy in the absence of adequate oxygen. If too much lactic acid stays in the body, the balance tips and the person begins to feel ill. The signs of lactic acidosis are deep and rapid breathing, vomiting, and abdominal pain; similar symptoms for diabetic ketoacidosis (DKA). Lactic acidosis may be caused by diabetic ketoacidosis or liver or kidney disease, as well as some forms of medication, most notably metformin also sold as "Glucophage," which is often prescribed for persons with type 2 diabetes, insulin resistance, and women for polycystic ovarian syndrome (PCOS). The Cohen-Woods classification (1976) categorises causes of lactic acidosis as follows: Type A: Decreased perfusion or oxygenation Type B:B1: Underlying diseases (sometimes causing type A) B2: Medication (including metformin [Glucophage]) or intoxication B3: Inborn error of metabolism, including diabetes usually type 1, but also type 2. Metabolic acidosis is a state in which the blood pH is low (under 7.35) due to increased production of H+ by the body or the inability of the body to form bicarbonate (HCO3-) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general types of acidosis. Normal indicated by a blood test is .7 -1.7 my readings are 1.6 and my shoulder muscles are hurting sometimes down the left arm in various places. Since i am Diabetic Continue reading >>

Lactic Acidosis And Exercise

Lactic Acidosis And Exercise

Lactic acid builds up naturally in the muscles during vigorous activity. Sometimes if we've overdone it during a workout or run, the body can't clear lactic acid or lactate quickly enough, and lactic acid levels build up. Lactic acid can irritate muscles, causing discomfort and soreness. Sore muscles after exercising is called delayed onset muscle soreness or DOMS. Lactic acid is just one cause of DOMS. Because lactic acid is removed from muscles between a few hours to under a day after a workout, it can't be blamed for lasting soreness some days after working out. Cooling down or warming down after exercise can help remove the lactic acid as well as letting the heart rate slow down more gradually. Some severe medical conditions can also cause lactic acidosis, which can be dangerous. During exercise, muscles metabolise glucose (sugar) into energy. Muscles receive glucose continually through the blood, and also have their own stores of sugar (called glycogen). Every person has an upper limit of exercise ability, called the anaerobic threshold or lactate threshold. The lactate threshold is basically a measurement of how fit the heart and blood vessels are. With regular exercise training, a persons lactate threshold goes up. Exercising at an intensity level below the lactate threshold produces very little lactic acid and the body quickly clears what is produced. A person can exercise below the lactate threshold for a long time, even for hours. Once the intensity of exercise exceeds the lactate threshold, muscles begin to use glucose inefficiently, through alternative chemical reactions. Lactic acid is produced and can rapidly build up in the blood and muscles. When a person's exercise intensity crosses the lactate threshold the activity rapidly becomes much more difficult Continue reading >>

Lactic Acidosis – What You Can Do About It

Lactic Acidosis – What You Can Do About It

When we hear of lactate, lactic acidosis, or lactic acid as it is more commonly known, we usually think of it as a side effect of physical exercise. Activities such as sprinting and lifting weights are designed to increase speed, strength, and muscle mass, the goal of many athletes. Unfortunately, lactic acid buildup can leave us feeling quite the opposite, particularly after unaccustomed exercise. Tight, tired, and painful muscles can hinder our movements for days until the circulation improves and the body has filtered out excess acids. Why does the body produce lactic acid? The answer lies in our muscles’ need for energy. To create this energy, our bodies need oxygen. If the body cannot get enough oxygen, it produces lactic acid, converting it into energy. However, if the lactic acid is not all used up, it will accumulate in the bloodstream, causing “acidosis” – too much acid in the body. Sports coaches may say that athletes just need to learn how to manage their production of lactic acid, by creating what they need and using it all up, so acidosis doesn’t happen. This is not so easy to accomplish, especially for “weekend warriors” – if acid constantly builds up in the body and is not converted into energy, then the muscles are constantly tired, tight, and painful. But, the story about lactic acid production and consumption does not end there, as we will see. Exercise is not the only cause of lactic acidosis When we look into it further, we find that there are two types of lactic acidosis: Type A and Type B. Type A is the result of cells being deprived of oxygen. This is what, in essence, we have referred to above, but can also include anemia or even carbon monoxide poisoning. Type B is where we begin to understand that there is another side to lactic Continue reading >>

Metformin And Fatal Lactic Acidosis

Metformin And Fatal Lactic Acidosis

Publications Published: July 1998 Information on this subject has been updated. Read the most recent information. Dr P Pillans,former Medical Assessor, Centre for Adverse Reactions Monitoring (CARM), Dunedin Metformin is a useful anti-hyperglycaemic agent but significant mortality is associated with drug-induced lactic acidosis. Significant renal and hepatic disease, alcoholism and conditions associated with hypoxia (eg. cardiac and pulmonary disease, surgery) are contraindications to the use of metformin. Other risk factors for metformin-induced lactic acidosis are sepsis, dehydration, high dosages and increasing age. Metformin remains a major reported cause of drug-associated mortality in New Zealand. Of the 12 cases of lactic acidosis associated with metformin reported to CARM since 1977, 2 occurred in the last year and 8 cases had a fatal outcome. Metformin useful but small risk of potentially fatal lactic acidosis Metformin is a useful therapeutic agent for obese non-insulin dependent diabetics and those whose glycaemia cannot be controlled by sulphonylurea monotherapy. Lactic acidosis is an uncommon but potentially fatal adverse effect. The reported frequency of lactic acidosis is 0.06 per 1000 patient-years, mostly in patients with predisposing factors.1 Examples of metformin-induced lactic acidosis cases reported to CARM include: A 69-year-old man, with renal and cardiac disease, was prescribed metformin due to failing glycaemic control on glibenclamide monotherapy. He was well for six weeks, then developed lactic acidosis and died within 3 days. Post-surgical lactic acidosis caused the death of a 70-year-old man whose metformin was not withdrawn at the time of surgery. A 56-year-old woman, with no predisposing disease, died from lactic acidosis following major Continue reading >>

Lactic Acidosis: What You Need To Know

Lactic Acidosis: What You Need To Know

Lactic acidosis is a form of metabolic acidosis that begins in the kidneys. People with lactic acidosis have kidneys that are unable to remove excess acid from their body. If lactic acid builds up in the body more quickly than it can be removed, acidity levels in bodily fluids — such as blood — spike. This buildup of acid causes an imbalance in the body’s pH level, which should always be slightly alkaline instead of acidic. There are a few different types of acidosis. Lactic acid buildup occurs when there’s not enough oxygen in the muscles to break down glucose and glycogen. This is called anaerobic metabolism. There are two types of lactic acid: L-lactate and D-lactate. Most forms of lactic acidosis are caused by too much L-lactate. Lactic acidosis has many causes and can often be treated. But if left untreated, it may be life-threatening. The symptoms of lactic acidosis are typical of many health issues. If you experience any of these symptoms, you should contact your doctor immediately. Your doctor can help determine the root cause. Several symptoms of lactic acidosis represent a medical emergency: fruity-smelling breath (a possible indication of a serious complication of diabetes, called ketoacidosis) confusion jaundice (yellowing of the skin or the whites of the eyes) trouble breathing or shallow, rapid breathing If you know or suspect that you have lactic acidosis and have any of these symptoms, call 911 or go to an emergency room right away. Other lactic acidosis symptoms include: exhaustion or extreme fatigue muscle cramps or pain body weakness overall feelings of physical discomfort abdominal pain or discomfort diarrhea decrease in appetite headache rapid heart rate Lactic acidosis has a wide range of underlying causes, including carbon monoxide poisoni Continue reading >>

Lactic Acidosis Induced By Metformin: Incidence, Management And Prevention.

Lactic Acidosis Induced By Metformin: Incidence, Management And Prevention.

Abstract Lactic acidosis associated with metformin treatment is a rare but important adverse event, and unravelling the problem is critical. First, this potential event still influences treatment strategies in type 2 diabetes mellitus, particularly in the many patients at risk of kidney failure, in those presenting contraindications to metformin and in the elderly. Second, the relationship between metformin and lactic acidosis is complex, since use of the drug may be causal, co-responsible or coincidental. The present review is divided into three parts, dealing with the incidence, management and prevention of lactic acidosis occurring during metformin treatment. In terms of incidence, the objective of this article is to counter the conventional view of the link between metformin and lactic acidosis, according to which metformin-associated lactic acidosis is rare but is still associated with a high rate of mortality. In fact, the direct metformin-related mortality is close to zero and metformin may even be protective in cases of very severe lactic acidosis unrelated to the drug. Metformin has also inherited a negative class effect, since the early biguanide, phenformin, was associated with more frequent and sometimes fatal lactic acidosis. In the second part of this review, the objective is to identify the most efficient patient management methods based on our knowledge of how metformin acts on glucose/lactate metabolism and how lactic acidosis may occur (at the organ and cellular levels) during metformin treatment. The liver appears to be a key organ for both the antidiabetic effect of metformin and the development of lactic acidosis; the latter is attributed to mitochondrial impairment and subsequent adenosine triphosphate depletion, acceleration of the glycolytic flux Continue reading >>

More in ketosis