diabetestalk.net

How Is Ketoacidosis Caused

Diabetic Ketoacidosis

Diabetic Ketoacidosis

What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

How Can Diabetic Ketoacidosis Cause Cerebral Edema In Infants?

How Can Diabetic Ketoacidosis Cause Cerebral Edema In Infants?

Diabetic Ketoacidosis (DKA) in and of itself does not cause cranial edema. What happens with DKA is the excess glucose in the blood changes the osmolarity of the blood, and causes fluid shift from intracelluar to extracellular. This causes the cells to shrink somewhat. Upon finding the patient in the DKA state, the teatment is insulin and IV fluids. Insulin and the hydration IV fluids reverse the DKA state, and also the osmolarity of the extracellular fluid, causing a fluid shift back into the cell. With the osmolarity reversed, the cells begin swelling—sometimes sometimes larger than before: this is what causes the edema in the cerebrum. This is particularly dangerous because the brain cells have nowhere to go, being encased within the skull. Even though infants have fontanelles and the skull has not fused solid, the extra fluid causes compression within the brain, which in turn can adversely affect the brain function. Continue reading >>

How Does Diabetic Ketoacidosis Cause Vomiting?

How Does Diabetic Ketoacidosis Cause Vomiting?

DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body’s cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can’t get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn’t available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body’s metabolic processes aren’t able to function as well. A higher level of ketones also affects levels of sugar and electrolytes in the body. As ketones accumulate in the blood, more ketones will be passed in the urine, taking sodium and potassium salts out with them. Over time, levels of sodium and potassium salts in the body become depleted, which can cause nausea and vomiting. The result is a vicious cycle. The most important prevention strategies are to monitor blood glucose levels routinely, keep blood glucose levels controlled (e.g., Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Tweet Diabetic ketoacidosis (DKA) is a dangerous complication faced by people with diabetes which happens when the body starts running out of insulin. DKA is most commonly associated with type 1 diabetes, however, people with type 2 diabetes that produce very little of their own insulin may also be affected. Ketoacidosis is a serious short term complication which can result in coma or even death if it is not treated quickly. Read about Diabetes and Ketones What is diabetic ketoacidosis? DKA occurs when the body has insufficient insulin to allow enough glucose to enter cells, and so the body switches to burning fatty acids and producing acidic ketone bodies. A high level of ketone bodies in the blood can cause particularly severe illness. Symptoms of DKA Diabetic ketoacidosis may itself be the symptom of undiagnosed type 1 diabetes. Typical symptoms of diabetic ketoacidosis include: Vomiting Dehydration An unusual smell on the breath –sometimes compared to the smell of pear drops Deep laboured breathing (called kussmaul breathing) or hyperventilation Rapid heartbeat Confusion and disorientation Symptoms of diabetic ketoacidosis usually evolve over a 24 hour period if blood glucose levels become and remain too high (hyperglycemia). Causes and risk factors for diabetic ketoacidosis As noted above, DKA is caused by the body having too little insulin to allow cells to take in glucose for energy. This may happen for a number of reasons including: Having blood glucose levels consistently over 15 mmol/l Missing insulin injections If a fault has developed in your insulin pen or insulin pump As a result of illness or infections High or prolonged levels of stress Excessive alcohol consumption DKA may also occur prior to a diagnosis of type 1 diabetes. Ketoacidosis can occasional Continue reading >>

Ketoacidosis: A Complication Of Diabetes

Ketoacidosis: A Complication Of Diabetes

Diabetic ketoacidosis is a serious condition that can occur as a complication of diabetes. People with diabetic ketoacidosis (DKA) have high blood sugar levels and a build-up of chemicals called ketones in the body that makes the blood more acidic than usual. Diabetic ketoacidosis can develop when there isn’t enough insulin in the body for it to use sugars for energy, so it starts to use fat as a fuel instead. When fat is broken down to make energy, ketones are made in the body as a by-product. Ketones are harmful to the body, and diabetic ketoacidosis can be life-threatening. Fortunately, treatment is available and is usually successful. Symptoms Ketoacidosis usually develops gradually over hours or days. Symptoms of diabetic ketoacidosis may include: excessive thirst; increased urination; tiredness or weakness; a flushed appearance, with hot dry skin; nausea and vomiting; dehydration; restlessness, discomfort and agitation; fruity or acetone smelling breath (like nail polish remover); abdominal pain; deep or rapid breathing; low blood pressure (hypotension) due to dehydration; and confusion and coma. See your doctor as soon as possible or seek emergency treatment if you develop symptoms of ketoacidosis. Who is at risk of diabetic ketoacidosis? Diabetic ketoacidosis usually occurs in people with type 1 diabetes. It rarely affects people with type 2 diabetes. DKA may be the first indication that a person has type 1 diabetes. It can also affect people with known diabetes who are not getting enough insulin to meet their needs, either due to insufficient insulin or increased needs. Ketoacidosis most often happens when people with diabetes: do not get enough insulin due to missed or incorrect doses of insulin or problems with their insulin pump; have an infection or illne Continue reading >>

Ketoacidosis

Ketoacidosis

Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate. Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.[1] Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis. Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover.[2] Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone. Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia. Cause[edit] Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.[3] In diabetic ketoacidosis, a high concentration of ketone bodies is usually accomp Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketoacidosis (DKA) is a dangerous complication of diabetes caused by a lack of insulin in the body. Diabetic ketoacidosis occurs when the body is unable to use blood sugar (glucose) because there isn't enough insulin. Instead, it breaks down fat as an alternative source of fuel. This causes a build-up of a by-product called ketones. Most cases of diabetic ketoacidosis occur in people with type 1 diabetes, although it can also be a complication of type 2 diabetes. Symptoms of diabetic ketoacidosis include: passing large amounts of urine feeling very thirsty vomiting abdominal pain Seek immediate medical assistance if you have any of these symptoms and your blood sugar levels are high. Read more about the symptoms of diabetic ketoacidosis. Who is affected by diabetic ketoacidosis? Diabetic ketoacidosis is a relatively common complication in people with diabetes, particularly children and younger adults who have type 1 diabetes. Younger children under four years of age are thought to be most at risk. In about 1 in 4 cases, diabetic ketoacidosis develops in people who were previously unaware they had type 1 diabetes. Diabetic ketoacidosis accounts for around half of all diabetes-related hospital admissions in people with type 1 diabetes. Diabetic ketoacidosis triggers These include: infections and other illnesses not keeping up with recommended insulin injections Read more about potential causes of diabetic ketoacidosis. Diagnosing diabetic ketoacidosis This is a relatively straightforward process. Blood tests can be used to check your glucose levels and any chemical imbalances, such as low levels of potassium. Urine tests can be used to estimate the number of ketones in your body. Blood and urine tests can also be used to check for an underlying infec Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic ketoacidosis is a metabolic complication of alcohol use and starvation characterized by hyperketonemia and anion gap metabolic acidosis without significant hyperglycemia. Alcoholic ketoacidosis causes nausea, vomiting, and abdominal pain. Diagnosis is by history and findings of ketoacidosis without hyperglycemia. Treatment is IV saline solution and dextrose infusion. Alcoholic ketoacidosis is attributed to the combined effects of alcohol and starvation on glucose metabolism. Alcohol diminishes hepatic gluconeogenesis and leads to decreased insulin secretion, increased lipolysis, impaired fatty acid oxidation, and subsequent ketogenesis, causing an elevated anion gap metabolic acidosis. Counter-regulatory hormones are increased and may further inhibit insulin secretion. Plasma glucose levels are usually low or normal, but mild hyperglycemia sometimes occurs. Diagnosis requires a high index of suspicion; similar symptoms in an alcoholic patient may result from acute pancreatitis, methanol or ethylene glycol poisoning, or diabetic ketoacidosis (DKA). In patients suspected of having alcoholic ketoacidosis, serum electrolytes (including magnesium), BUN and creatinine, glucose, ketones, amylase, lipase, and plasma osmolality should be measured. Urine should be tested for ketones. Patients who appear significantly ill and those with positive ketones should have arterial blood gas and serum lactate measurement. The absence of hyperglycemia makes DKA improbable. Those with mild hyperglycemia may have underlying diabetes mellitus, which may be recognized by elevated levels of glycosylated Hb (HbA1c). Typical laboratory findings include a high anion gap metabolic acidosis, ketonemia, and low levels of potassium, magnesium, and phosphorus. Detection of acidosis may be com Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Ketoacidosis In Cats – Causes, Symptoms & Treatment

Ketoacidosis In Cats – Causes, Symptoms & Treatment

Ketoacidosis in cats at a glance Ketoacidosis is a serious complication of diabetes in which ketones and blood sugar levels build up in the body due to insufficient levels of insulin which is required to move glucose into the cells for energy. As a result, the body uses fat as an alternate energy source which produces ketones causing the blood to become too acidic. Common causes include uncontrolled diabetes, missed or insufficient insulin, surgery, infection, stress and obesity. Symptoms of ketoacidosis include increased urination and thirst, dehydration, nausea, diarrhea, confusion, rapid breathing which may later change to laboured breathing. What is diabetic ketoacidosis? Diabetic ketoacidosis (DKA) is a life-threatening complication of diabetes characterised by metabolic acidosis (increased acids in the blood), hyperglycemia (high blood glucose) and ketonuria (ketones in the urine). It is caused by a lack of or insufficient amounts of insulin which is required to move glucose from the bloodstream and into the cells to be used for energy. When this occurs, the body begins to search for alternate sources of energy and begins to break down fat. When fat is broken down (metabolised) into fatty acids, waste products known as ketones (acetoacetate, beta-hydroxybutyrate, acetone) are released from the liver and accumulate in the bloodstream (known as ketonemia). This causes the blood to become too acidic (metabolic acidosis). As well as metabolic acidosis, ketones also cause central nervous depression.The body will try to get rid of the ketones by excreting them out of the body via the urine, increased urine output leads to dehydration, making the problem worse. Meanwhile, the unused glucose remains in the bloodstream, resulting in hyperglycemia (high blood sugar).Insulin Continue reading >>

An Unusual Cause For Ketoacidosis

An Unusual Cause For Ketoacidosis

Abstract Introduction In our continuing series on the application of principles of integrative physiology at the bedside, once again the central figure is an imaginary consultant, the renal and metabolic physiologist, Professor McCance, who deals with data from a real case. On this occasion his colleague Sir Hans Krebs, an expert in the field of glucose and energy metabolism, assists him in the analysis. Their emphasis is on concepts that depend on an understanding of physiology that crosses subspecialty boundaries. To avoid overwhelming the reader with details, key facts are provided, but only when necessary. The overall objective of this teaching exercise is to demonstrate how application of simple principles of integrative physiology at the bedside can be extremely helpful for clinical decision-making (Table 1). Principle Comment 1. A high H+ concentration per se is seldom life-threatening The threat to survival is usually due to the cause for the acidosis rather than the pH per se 2. Finding a new anion means a new acid was added Look in plasma (anion gap) and urine (net charge) to identify the new anions 3. Identify the acid by thinking of the properties of the anion Rate of production, rapidity of clearance from plasma, and unique toxic effects may all provide clues 4. Metabolic acidosis develops when the kidney fails to add new HCO3 to the body The kidney generates HCO3− by excreting NH4+, (usually with Cl−), in the urine 5. Ketoacids are brain fuels, produced when there is a prolonged lack of insulin The usual causes are diabetic ketoacidosis, alcoholic ketoacidosis, starvation or hypoglycemia-induced ketoacidosis, or that associated with salicylate overdose 6. Ketoacids are produced in the liver from acetyl-CoA, usually derived from fatty acids A low net in Continue reading >>

Ketosis Vs. Ketoacidosis: What You Should Know

Ketosis Vs. Ketoacidosis: What You Should Know

Despite the similarity in name, ketosis and ketoacidosis are two different things. Ketoacidosis refers to diabetic ketoacidosis (DKA) and is a complication of type 1 diabetes mellitus. It’s a life-threatening condition resulting from dangerously high levels of ketones and blood sugar. This combination makes your blood too acidic, which can change the normal functioning of internal organs like your liver and kidneys. It’s critical that you get prompt treatment. DKA can occur very quickly. It may develop in less than 24 hours. It mostly occurs in people with type 1 diabetes whose bodies do not produce any insulin. Several things can lead to DKA, including illness, improper diet, or not taking an adequate dose of insulin. DKA can also occur in individuals with type 2 diabetes who have little or no insulin production. Ketosis is the presence of ketones. It’s not harmful. You can be in ketosis if you’re on a low-carbohydrate diet or fasting, or if you’ve consumed too much alcohol. If you have ketosis, you have a higher than usual level of ketones in your blood or urine, but not high enough to cause acidosis. Ketones are a chemical your body produces when it burns stored fat. Some people choose a low-carb diet to help with weight loss. While there is some controversy over their safety, low-carb diets are generally fine. Talk to your doctor before beginning any extreme diet plan. DKA is the leading cause of death in people under 24 years old who have diabetes. The overall death rate for ketoacidosis is 2 to 5 percent. People under the age of 30 make up 36 percent of DKA cases. Twenty-seven percent of people with DKA are between the ages of 30 and 50, 23 percent are between the ages of 51 and 70, and 14 percent are over the age of 70. Ketosis may cause bad breath. Ket Continue reading >>

How To Avoid Diabetic Ketoacidosis

How To Avoid Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a possible complication of diabetes caused by extreme hyperglycemia, or high blood glucose. It is a serious and potentially life-threatening complication, one that you should work hard to avoid when you have diabetes. Diabetic ketoacidosis mainly affects people with type 1 diabetes, but it is a very rare possible complication for people with type 2 diabetes. Your doctor and certified diabetes educator will teach you how to recognize and manage diabetic ketoacidosis. It's critical to know and recognize the signs and symptoms of DKA, as well as how to treat it. What Is Diabetic Ketoacidosis? Diabetic ketoacidosis happens when your blood glucose level gets too high—usually higher than 300 mg/dL. Because people with type 1 diabetes do not have the insulin to process this extra glucose, their body cannot break down this glucose to create energy. To create energy for itself, the body starts to aggressively break down fat. Ketones or ketoacids are a byproduct of this process. Your body can handle a small amount of ketones circulating in your blood. However, the sizeable amounts from DKA are toxic. Diabetic Ketoacidosis Causes Illness, infections, stress, injuries, neglecting diabetes care (not properly taking your insulin, for example), and alcohol consumption can cause DKA. Diabetic Ketoacidosis Symptoms Initial symptoms of DKA include a stomach ache, nausea, and vomiting. One problem with DKA is that people could mistake it for an illness that typically gets better over time like the flu or food poisoning. Other symptoms of diabetic ketoacidosis include: fruity breath (when fat is broken down by the body, it creates a chemical called acetone that smells fruity) fatigue frequent urination intense thirst headache If you feel any of these sympto Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

More in ketosis