diabetestalk.net

How Does Infection Lead To Ketoacidosis?

The Scary Experience Of Diabetic Ketoacidosis

The Scary Experience Of Diabetic Ketoacidosis

Today, we’re excited to share with you another guest blog from Katie Janowiak, who works for the Medtronic Foundation, our company’s philanthropic arm. When she first told me her story about food poisoning and Diabetic Ketoacidosis (DKA), I knew others could benefit from hearing it as well. Thanks Katie for your openness and allowing us to share your scary story so that the LOOP community can learn from it. Throughout this past year, I’ve had the honor of sharing with you, the amazing LOOP community, my personal journey and the often humorous sequence of events that is my life with T1. Humor is, after all, the best (and cheapest) therapy. Allow me to pause today to share with you the down and dirty of what it feels like to have something that is not the slightest bit humorous: diabetic ketoacidosis.You are hot. You are freezing. You are confused. You are blacked out but coherent. You go to talk but words fail you. Time flies and goes in slow motion simultaneously. You will likely smell and look like death. In my instance, this was brought on by the combination of excessive vomiting and dehydration caused by food poisoning and the diabetic ketoacidosis that followed after my body had gone through so much. In hindsight, I was lucky, my husband knew that I had food poisoning because I began vomiting after our meal. But I had never prepped him on diabetic ketoacidosis and the symptoms (because DKA was for those other diabetics.) Upon finding me in our living room with a bowl of blood and bile by my side (no, I am not exaggerating), he got me into the car and took me to emergency care. It was 5:30 p.m. – and I thought it was 11:00 a.m. The series of events that led up to my stay in the ICU began innocently enough. It was a warm summer night and my husband and I walke Continue reading >>

What Is Diabetic Ketoacidosis?

What Is Diabetic Ketoacidosis?

Diabetic ketoacidosis, or DKA, is a serious health problem that can happen to a person with diabetes. It happens when chemicals called ketones build up in the blood. Normally, the cells of your body take in and use glucose as a source of energy. Glucose moves through the body in the bloodstream. Insulin is a hormone that helps your cells take in the glucose from the blood. If you have diabetes, your cells can’t take in and use this glucose in a normal way. This may be because your body doesn’t make enough insulin. Or it may be because your cells don’t respond to it normally. As a result, glucose builds up in your bloodstream and doesn’t reach your cells. Without glucose to use, the cells in your body burn fat instead of glucose for energy. When cells burn fat, they make ketones. High levels of ketones can poison the body. High levels of glucose can also build up in your blood and cause other symptoms. Ketoacidosis also changes the amount of other substances in your blood. These include electrolytes, such as sodium, potassium, and bicarbonate. This can lead to other problems. Ketoacidosis happens most often in a person with type 1 diabetes. This is a condition where the body does not make enough insulin. In rare cases, ketoacidosis can happen in a person with type 2 diabetes. It can happen when they are under stress, like when they are sick, or when they have taken certain medicines that change how their bodies handle glucose. Diabetic ketoacidosis is pretty common. It is more common in younger people. Women have it more often than men do. What causes diabetic ketoacidosis? High levels of ketones and glucose in your blood can cause ketoacidosis. This might happen if you: Don’t know you have diabetes, and your body is breaking down too much fat Know you have dia Continue reading >>

Ketones: Clearing Up The Confusion

Ketones: Clearing Up The Confusion

Ketones, ketosis, ketoacidosis, DKA…these are words that you’ve probably heard at one point or another, and you might be wondering what they mean and if you need to worry about them at all, especially if you have diabetes. This week, we’ll explore the mysterious world of ketones, including if and how they may affect you. Ketones — what are they? Ketones are a type of acid that the body can form if there’s not enough carbohydrate to be burned for energy (yes, you do need carbs for fuel). Without enough carb, the body turns to another energy source: fat. Ketones are made in the liver from fat breakdown. This is called ketogenesis. People who don’t have diabetes can form ketones. This might occur if a person does extreme exercise, has an eating disorder, is fasting (not eating), or is following a low-carbohydrate diet. This is called ketosis and it’s a normal response to starvation. In a person who has diabetes, ketones form for the same reason (not enough carb for energy), but this often occurs because there isn’t enough insulin available to help move carb (in the form of glucose) from the bloodstream to the cells to be used for energy. Again, the body scrambles to find an alternate fuel source in the form of fat. You might be thinking that it’s a good thing to burn fat for fuel. However, for someone who has diabetes, ketosis can quickly become dangerous if it occurs due to a continued lack of insulin (the presence of ketones along with “normal” blood sugar levels is not necessarily a cause for concern). In the absence of insulin (which can occur if someone doesn’t take their insulin or perhaps uses an insulin pump and the pump has a malfunction, for example), fat cells continue to release fat into the circulation; the liver then continues to churn Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

> Hyperglycemia And Diabetic Ketoacidosis

> Hyperglycemia And Diabetic Ketoacidosis

When blood glucose levels (also called blood sugar levels) are too high, it's called hyperglycemia. Glucose is a sugar that comes from foods, and is formed and stored inside the body. It's the main source of energy for the body's cells and is carried to each through the bloodstream. But even though we need glucose for energy, too much glucose in the blood can be unhealthy. Hyperglycemia is the hallmark of diabetes — it happens when the body either can't make insulin (type 1 diabetes) or can't respond to insulin properly (type 2 diabetes). The body needs insulin so glucose in the blood can enter the cells to be used for energy. In people who have developed diabetes, glucose builds up in the blood, resulting in hyperglycemia. If it's not treated, hyperglycemia can cause serious health problems. Too much sugar in the bloodstream for long periods of time can damage the vessels that supply blood to vital organs. And, too much sugar in the bloodstream can cause other types of damage to body tissues, which can increase the risk of heart disease and stroke, kidney disease, vision problems, and nerve problems in people with diabetes. These problems don't usually show up in kids or teens with diabetes who have had the disease for only a few years. However, they can happen in adulthood in some people, particularly if they haven't managed or controlled their diabetes properly. Blood sugar levels are considered high when they're above someone's target range. The diabetes health care team will let you know what your child's target blood sugar levels are, which will vary based on factors like your child's age. A major goal in controlling diabetes is to keep blood sugar levels as close to the desired range as possible. It's a three-way balancing act of: diabetes medicines (such as in Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Background Diabetic ketoacidosis (DKA), once thought to typify type 1 diabetes mellitus, has been reported to affect individuals with type 2 diabetes mellitus. An analysis and overview of the different clinical and biochemical characteristics of DKA that might be predicted between patients with type 1 and type 2 diabetes is needed. Methods We reviewed 176 admissions of patients with moderate-to-severe DKA. Patients were classified as having type 1 or type 2 diabetes based on treatment history and/or autoantibody status. Groups were compared for differences in symptoms, precipitants, vital statistics, biochemical profiles at presentation, and response to therapy. Results Of 138 patients admitted for moderate-to-severe DKA, 30 had type 2 diabetes. A greater proportion of the type 2 diabetes group was Latino American or African American (P<.001). Thirty-five admissions (19.9%) were for newly diagnosed diabetes. A total of 85% of all admissions involved discontinuation of medication use, 69.2% in the type 2 group. Infections were present in 21.6% of the type 1 and 48.4% of the type 2 diabetes admissions. A total of 21% of patients with type 1 diabetes and 70% with type 2 diabetes had a body mass index greater than 27. Although the type 1 diabetes group was more acidotic (arterial pH, 7.21 ± 0.12 vs 7.27 ± 0.08; P<.001), type 2 diabetes patients required longer treatment periods (36.0 ± 11.6 vs 28.9 ± 8.9 hours, P = .01) to achieve ketone-free urine. Complications from therapy were uncommon. Conclusions A significant proportion of DKA occurs in patients with type 2 diabetes. The time-tested therapy for DKA of intravenous insulin with concomitant glucose as the plasma level decreases, sufficient fluid and electrolyte replacement, and attention to associated problems remai Continue reading >>

Diabetic Ketoacidosis And Hypersmolar Non-ketotic Coma

Diabetic Ketoacidosis And Hypersmolar Non-ketotic Coma

Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are the most serious acute metabolic complications of diabetes. Recent data indicate there are more than 144,000 hospital admissions per year for DKA in the United States and the number of cases show an upward trend, with a 30% increase in the annual number of cases between 1995 and 2009. Treatment of DKA utilizes a large number of resources with an annual medical expense of $2.4 billion. The rate of hospital admissions for HHS is lower than for DKA, accounting for less than 1% of all diabetes-related admissions. Although DKA and HHS are often discussed as separate entities, they represent points along a spectrum of hyperglycemic emergencies due to poorly controlled diabetes. Both DKA and HHS are characterized by insulinopenia and severe hyperglycemia. Clinically, they differ only by the degree of dehydration and the severity of metabolic acidosis. DKA has long been considered a key clinical feature of type 1 diabetes (T1D), but in contrast to popular belief, DKA is more common in patients with type 2 diabetes (T2D). T2D now accounts for up to one half of all newly diagnosed diabetes in children ages 10-21 years. In the U.S., the SEARCH for Diabetes in Youth Study found that 29.4% of participants under 20 years of age with T1D presented with DKA, compared with 9.7% of youth with T2D. In community-based studies more than 40% of patients with DKA are older than 40 and more than 20% are older than 55. Patients with T2D may develop DKA under stressful conditions such as trauma, surgery or infections. In addition, in recent years an increasing number of unprovoked ketoacidosis cases without precipitating cause have been reported in children, adolescents and adult subjects with T2D. HHS occurs most commonl Continue reading >>

Ketoacidosis: A Complication Of Diabetes

Ketoacidosis: A Complication Of Diabetes

Diabetic ketoacidosis is a serious condition that can occur as a complication of diabetes. People with diabetic ketoacidosis (DKA) have high blood sugar levels and a build-up of chemicals called ketones in the body that makes the blood more acidic than usual. Diabetic ketoacidosis can develop when there isn’t enough insulin in the body for it to use sugars for energy, so it starts to use fat as a fuel instead. When fat is broken down to make energy, ketones are made in the body as a by-product. Ketones are harmful to the body, and diabetic ketoacidosis can be life-threatening. Fortunately, treatment is available and is usually successful. Symptoms Ketoacidosis usually develops gradually over hours or days. Symptoms of diabetic ketoacidosis may include: excessive thirst; increased urination; tiredness or weakness; a flushed appearance, with hot dry skin; nausea and vomiting; dehydration; restlessness, discomfort and agitation; fruity or acetone smelling breath (like nail polish remover); abdominal pain; deep or rapid breathing; low blood pressure (hypotension) due to dehydration; and confusion and coma. See your doctor as soon as possible or seek emergency treatment if you develop symptoms of ketoacidosis. Who is at risk of diabetic ketoacidosis? Diabetic ketoacidosis usually occurs in people with type 1 diabetes. It rarely affects people with type 2 diabetes. DKA may be the first indication that a person has type 1 diabetes. It can also affect people with known diabetes who are not getting enough insulin to meet their needs, either due to insufficient insulin or increased needs. Ketoacidosis most often happens when people with diabetes: do not get enough insulin due to missed or incorrect doses of insulin or problems with their insulin pump; have an infection or illne Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Diabetic Ketoacidosis With Two Life Threatening Infections: Mucormycosis, And Bilateral Emphysematous Pyelonepritis, Preciptating Erythema Nodosum Leprosum As The Initial Presentation Of Diabetes

Diabetic Ketoacidosis With Two Life Threatening Infections: Mucormycosis, And Bilateral Emphysematous Pyelonepritis, Preciptating Erythema Nodosum Leprosum As The Initial Presentation Of Diabetes

Ahmed Daoud1*, Amira Elbendary2,3, Mohanad Elfishawi1, Mahmoud Rabea1, Mostafa Alfishawy1,4, Sholkamy Amany MD and Wasfy Ayda MD 1Internal Medicine department – Kasr Alainy Hospital, Cairo University, Egypt 2Dermatology Department, Kasr Alainy Hospital, Cairo University, Egypt 3Ackerman Academy of Dermatopathology, New York, New York, USA 4Ichan School of Medicine, Mount Sinai/ Queens General Hospital, New York, USA Corresponding Author : Ahmed Daoud, MD 2250 Holly Hall street Apartment 126, Houston , Tx 77054 Tel: 8239297124 E-mail: [email protected] Received June 19, 2014; Accepted September 16, 2014; Published September 24, 2014 Citation: Daoud A, Elbendary A, Elfishawi M, Rabea M, Alfishawy M, et al. (2014) Diabetic Ketoacidosis with Two Life Threatening Infections: Mucormycosis, and Bilateral Emphysematous Pyelonepritis, Preciptating Erythema Nodosum Leprosum as the Initial Presentation of Diabetes. J Diabetes Metab 5:433 doi:10.4172/2155-6156.1000433 Copyright: © 2014 Daoud A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Visit for more related articles at Journal of Diabetes & Metabolism Abstract Emphysematous pyelonephritis is an acute necrotizing renal and perirenal infection, caused by gas forming organism. Mucormycosis is an opportunistic aggressive fungal infection causing tissue thrombosis and necrosis. Erythema nodosum leprosum reaction is an inflammatory reaction occurring in borderline and lepromatous leprosy before, during or after multidrug treatment, where immune complexes deposit in various organs resulting in considerable damage to the organs that Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Tweet Diabetic ketoacidosis (DKA) is a dangerous complication faced by people with diabetes which happens when the body starts running out of insulin. DKA is most commonly associated with type 1 diabetes, however, people with type 2 diabetes that produce very little of their own insulin may also be affected. Ketoacidosis is a serious short term complication which can result in coma or even death if it is not treated quickly. Read about Diabetes and Ketones What is diabetic ketoacidosis? DKA occurs when the body has insufficient insulin to allow enough glucose to enter cells, and so the body switches to burning fatty acids and producing acidic ketone bodies. A high level of ketone bodies in the blood can cause particularly severe illness. Symptoms of DKA Diabetic ketoacidosis may itself be the symptom of undiagnosed type 1 diabetes. Typical symptoms of diabetic ketoacidosis include: Vomiting Dehydration An unusual smell on the breath –sometimes compared to the smell of pear drops Deep laboured breathing (called kussmaul breathing) or hyperventilation Rapid heartbeat Confusion and disorientation Symptoms of diabetic ketoacidosis usually evolve over a 24 hour period if blood glucose levels become and remain too high (hyperglycemia). Causes and risk factors for diabetic ketoacidosis As noted above, DKA is caused by the body having too little insulin to allow cells to take in glucose for energy. This may happen for a number of reasons including: Having blood glucose levels consistently over 15 mmol/l Missing insulin injections If a fault has developed in your insulin pen or insulin pump As a result of illness or infections High or prolonged levels of stress Excessive alcohol consumption DKA may also occur prior to a diagnosis of type 1 diabetes. Ketoacidosis can occasional Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

More in ketosis