
Dynamic Adaptation Of Nutrient Utilization In Humans
Most cells use glucose for ATP synthesis, but there are other fuel molecules equally important for maintaining the body's equilibrium or homeostasis. Indeed, although the oxidation pathways of fatty acids, amino acids, and glucose begin differently, these mechanisms ultimately converge onto a common pathway, the TCA cycle, occurring within the mitochondria (Figure 1). As mentioned earlier, the ATP yield obtained from lipid oxidation is over twice the amount obtained from carbohydrates and amino acids. So why don't all cells simply use lipids as fuel? In fact, many different cells do oxidize fatty acids for ATP production (Figure 2). Between meals, cardiac muscle cells meet 90% of their ATP demands by oxidizing fatty acids. Although these proportions may fall to about 60% depending on the nutritional status and the intensity of contractions, fatty acids may be considered the major fuel consumed by cardiac muscle. Skeletal muscle cells also oxidize lipids. Indeed, fatty acids are the main source of energy in skeletal muscle during rest and mild-intensity exercise. As exercise intensity increases, glucose oxidation surpasses fatty acid oxidation. Other secondary factors that influence the substrate of choice for muscle include exercise duration, gender, and training status. Another tissue that utilizes fatty acids in high amount is adipose tissue. Since adipose tissue is the storehouse of body fat, one might conclude that, during fasting, the source of fatty acids for adipose tissue cells is their own stock. Skeletal muscle and adipose tissue cells also utilize glucose in significant proportions, but only at the absorptive stage - that is, right after a regular meal. Other organs that use primarily fatty acid oxidation are the kidney and the liver. The cortex cells of the Continue reading >>

Converting Carbohydrates To Triglycerides
Consumers are inundated with diet solutions on a daily basis. High protein, low fat, non-impact carbohydrates, and other marketing “adjectives” are abundant within food manufacturing advertising. Of all the food descriptors, the most common ones individuals look for are “fat free” or “low fat”. Food and snack companies have found the low fat food market to be financially lucrative. The tie between fat intake, weight gain, and health risks has been well documented. The dietary guidelines suggest to keep fat intake to no more than 30% of the total diet and to consume foods low in saturated and trans fatty acids. But, this does not mean that we can consume as much fat free food as we want: “Fat free does not mean calorie free.” In many cases the foods that are low in fat have a large amount of carbohydrates. Carbohydrate intake, like any nutrient, can lead to adverse affects when over consumed. Carbohydrates are a necessary macronutrient, vital for maintenance of the nervous system and energy for physical activity. However, if consumed in amounts greater than 55% to 65% of total caloric intake as recommended by the American Heart Association can cause an increase in health risks. According to the World Health Organization the Upper Limit for carbohydrates for average people is 60% of the total dietary intake. Carbohydrates are formed in plants where carbons are bonded with oxygen and hydrogen to form chains of varying complexity. The complexity of the chains ultimately determines the carbohydrate classification and how they will digest and be absorbed in the body. Mono-and disaccharides are classified as simple carbohydrates, whereas polysaccharides (starch and fiber) are classified as complex. All carbohydrates are broken down into monosaccharides before b Continue reading >>

Curiocity - Curiocit | What Is Glucose For?
Why do you have a sweet tooth? Ever get a sugar high? Why can't my diabetic grandmother have sugar in her coffee? Oddly, the answers to all these questions started at the very beginning of life on earth, before diseases or the ability to taste ever existed. Like a dollar at the shopping mall, glucose (a sugar) is the basic unit of currency for life. Most important is that glucose can be exchanged for energy energy that is used by our bodies to make heat, to move muscles, and to forward all of the chemical reactions needed to keep us alive. Tiny organelles called mitochondria work inside cells to convert glucose into ATP, which is the universal body energy source. Mitochondria, which live inside our cells, have their own DNA and proteins that they make. It is believed that at the beginning of life, mitochondria were separate organisms that were engulfed by larger cells. This marriage was so beneficial to both partners, it has continued in the cells of living things for billions of years! Mitochondria are now the main energy powerhouses of cells and use glucose as their fuel. Glucose is also exchangeable for other important materials in the body. For instance, our bodies convert glucose to fat or glycogen for storage. We can burn that fat by increasing our energy needs, such as by exercise, as the fat gets converted back to glucose (and then energy) to move our muscles. We can even convert protein (amino acids) into glucose, starting with our muscles. This is why athletes and bodybuilders have such large appetites if they don't keep eating their muscles start to dissolve! (Of course, if they keep eating the same and aren't exercising they begin to store glucose as fat in their bellies, like the ex-athlete sportscasters on NFL tv). Why did life use glucose instead of othe Continue reading >>
- Exercise and Glucose Metabolism in Persons with Diabetes Mellitus: Perspectives on the Role for Continuous Glucose Monitoring
- Postprandial Blood Glucose Is a Stronger Predictor of Cardiovascular Events Than Fasting Blood Glucose in Type 2 Diabetes Mellitus, Particularly in Women: Lessons from the San Luigi Gonzaga Diabetes Study
- Exercise and Blood Glucose Levels

Does Carbohydrate Become Body Fat?
Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

Cell Energy And Cell Functions
Cells manage a wide range of functions in their tiny package — growing, moving, housekeeping, and so on — and most of those functions require energy. But how do cells get this energy in the first place? And how do they use it in the most efficient manner possible? Cells, like humans, cannot generate energy without locating a source in their environment. However, whereas humans search for substances like fossil fuels to power their homes and businesses, cells seek their energy in the form of food molecules or sunlight. In fact, the Sun is the ultimate source of energy for almost all cells, because photosynthetic prokaryotes, algae, and plant cells harness solar energy and use it to make the complex organic food molecules that other cells rely on for the energy required to sustain growth, metabolism, and reproduction (Figure 1). Cellular nutrients come in many forms, including sugars and fats. In order to provide a cell with energy, these molecules have to pass across the cell membrane, which functions as a barrier — but not an impassable one. Like the exterior walls of a house, the plasma membrane is semi-permeable. In much the same way that doors and windows allow necessities to enter the house, various proteins that span the cell membrane permit specific molecules into the cell, although they may require some energy input to accomplish this task (Figure 2). Complex organic food molecules such as sugars, fats, and proteins are rich sources of energy for cells because much of the energy used to form these molecules is literally stored within the chemical bonds that hold them together. Scientists can measure the amount of energy stored in foods using a device called a bomb calorimeter. With this technique, food is placed inside the calorimeter and heated until it bu Continue reading >>
- Cell-Centered: Scientists Embrace Cell-Replacement Therapy for Type 1 Diabetes
- Mobile App-Based Interventions to Support Diabetes Self-Management: A Systematic Review of Randomized Controlled Trials to Identify Functions Associated with Glycemic Efficacy
- Studies show that chia seeds can treat diabetes, boost energy and more

What Happens To Unburned Carbohydrates?
Your body uses mostly carbohydrates as well as fats for energy. Because the body doesn’t store carbs efficiently, they’re used first. Carbohydrates turn into glucose, which your body burns immediately or converts to glycogen to be stored in the muscles and liver for between meals. If you eat more calories from carbs or other sources than your body can use, the cells store the excess as fat. Of the three major nutrients -- carbohydrates, fat and protein -- the body burns carbs first for energy because they can’t be stored in great quantities. The carbohydrates in food get broken down into glucose, which moves into the small intestine, then the liver and into the blood. As blood sugar rises, the pancreas produces insulin, which signals the cells to take up sugar. Whatever glucose the cells don’t need immediately for energy is stored in the liver and muscles as glycogen. When the blood sugar levels fall -- such as between meals -- the liver releases glycogen. This cycle keeps your body supplied with a steady source of fuel. Insulin Resistance If you have insulin resistance or diabetes, the sugar-insulin cycle doesn’t work properly, leading to too much sugar and insulin circulating in the blood until eventually your body doesn’t produce enough insulin or is resistant to its effects. This is why people with diabetes or prediabetes often track the carbs they eat; eating too many carbohydrates, especially sugars and refined starches, can cause blood sugar and/or insulin to spike to potentially dangerous levels in people with diabetes. How Carbs Turn Into Fat When you eat too many calories, especially in the form of sugars and quickly burned starches, your body may reach its storage capacity for glycogen. The liver converts the stored sugars into triglycerides, or f Continue reading >>

The Science Behind Fat Metabolism
Per the usual disclaimer, always consult with your doctor before experimenting with your diet (seriously, go see a doctor, get data from blood tests, etc.). Please feel free to comment below if you’re aware of anything that should be updated; I’d appreciate knowing and I’ll update the content quickly. My goal here is to help a scientifically curious audience know the basic story and where to dive in for further study. If I’m successful, the pros will say “duh”, and everyone else will be better informed about how this all works. [UPDATE: based on a ton a helpful feedback and questions on the content below, I’ve written up a separate article summarizing the science behind ketogenic (low-carb) diets. Check it out. Also, the below content has been updated and is still very much applicable to fat metabolism on various kinds of diets. Thanks, everyone!] tl;dr The concentration of glucose in your blood is the critical upstream switch that places your body into a “fat-storing” or “fat-burning” state. The metabolic efficiency of either state — and the time it takes to get into one from the other — depends on a large variety of factors such as food and drink volume and composition, vitamin and mineral balances, stress, hydration, liver and pancreas function, insulin sensitivity, exercise, mental health, and sleep. Carbohydrates you eat, with the exception of indigestible forms like most fibers, eventually become glucose in your blood. Assuming your metabolism is functioning normally, if the switch is on you will store fat. If the switch is off, you will burn fat. Therefore, all things being equal, “diets” are just ways of hacking your body into a sufficiently low-glycemic state to trigger the release of a variety of hormones that, in turn, result in Continue reading >>
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure.
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure
- This Incredible Detox Drink Helps You Burn Fat, Lower Blood Pressur,Fight Diabetes And Boost Metabolism

How Does Fat Get Converted To Calories?
Opinions expressed by Forbes Contributors are their own. Answer by Bart Loews , passionate exercise enthusiast, on Quora : How is fat being converted into calories at cellular level? First lets get some term clarification: A calorie is a measure of energy, specifically heat. Its a measurement of an indirect use of your biological fuels. Your body doesnt really convert things to calories, it converts them to ATP which is used as energy. Calories are, sadly, the best way we have to measure this process.Ill assume that the point of this question is: How does fat turn into energy? Fat is a term used interchangeably with lipids and with adipose tissue. Lipids are molecules that consist of a hydrophobic tail with a hydrophilic head. Because of this polarized set up, they are able to cluster together to form barriers between water and non water, like bubbles. Your cell membranes are composed of lipids. Adipose tissue is what makes you fat. Adipose tissue stores lipids in the form of triglycerides or 3 fatty acid chains with a glycerol backbone. These triglycerides are what is broken down to be used for energy. Adipose tissue is made up of collections of adipocytes or fat cells. Adipose tissue is used for insulation, cushioning, and energy storage. You get a particular number of fat cells (between 30 and 300 billion) during adolescence and childhood. You don't lose them naturally, but you can gain more if they grow more than 4 fold from their original size. They grow and shrink as they take on more energy. Fat cells have a few other roles in the endocrine system, they release the hormone, Leptin when they receive energy from insulin. Leptin signals to your body that you're full. The more fat cells you have, the more leptin is released. It's been found that obese people are lep Continue reading >>

Nih Study Shows How Insulin Stimulates Fat Cells To Take In Glucose
Findings could aid in understanding diabetes, related conditions. Using high-resolution microscopy, researchers at the National Institutes of Health have shown how insulin prompts fat cells to take in glucose in a rat model. The findings were reported in the Sept. 8 issue of the journal Cell Metabolism. By studying the surface of healthy, live fat cells in rats, researchers were able to understand the process by which cells take in glucose. Next, they plan to observe the fat cells of people with varying degrees of insulin sensitivity, including insulin resistance — considered a precursor to type 2 diabetes (These observations may help identify the interval when someone becomes at risk for developing diabetes. "What we're doing here is actually trying to understand how glucose transporter proteins called GLUT4 work in normal, insulin-sensitive cells," said Karin G. Stenkula, Ph.D., a researcher at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and a lead author of the paper. "With an understanding of how these transporters in fat cells respond to insulin, we could detect the differences between an insulin-sensitive cell and an insulin-resistant cell, to learn how the response becomes impaired. We hope to identify when a person becomes pre-diabetic, before they go on to develop diabetes." Glucose, a simple sugar, provides energy for cell functions. After food is digested, glucose is released into the bloodstream. In response, the pancreas secretes insulin, which directs the muscle and fat cells to take in glucose. Cells obtain energy from glucose or convert it to fat for long-term storage. Like a key fits into a lock, insulin binds to receptors on the cell's surface, causing GLUT4 molecules to come to the cell's surface. As their name impli Continue reading >>

Physiologic Effects Of Insulin
Stand on a streetcorner and ask people if they know what insulin is, and many will reply, "Doesn't it have something to do with blood sugar?" Indeed, that is correct, but such a response is a bit like saying "Mozart? Wasn't he some kind of a musician?" Insulin is a key player in the control of intermediary metabolism, and the big picture is that it organizes the use of fuels for either storage or oxidation. Through these activities, insulin has profound effects on both carbohydrate and lipid metabolism, and significant influences on protein and mineral metabolism. Consequently, derangements in insulin signalling have widespread and devastating effects on many organs and tissues. The Insulin Receptor and Mechanism of Action Like the receptors for other protein hormones, the receptor for insulin is embedded in the plasma membrane. The insulin receptor is composed of two alpha subunits and two beta subunits linked by disulfide bonds. The alpha chains are entirely extracellular and house insulin binding domains, while the linked beta chains penetrate through the plasma membrane. The insulin receptor is a tyrosine kinase. In other words, it functions as an enzyme that transfers phosphate groups from ATP to tyrosine residues on intracellular target proteins. Binding of insulin to the alpha subunits causes the beta subunits to phosphorylate themselves (autophosphorylation), thus activating the catalytic activity of the receptor. The activated receptor then phosphorylates a number of intracellular proteins, which in turn alters their activity, thereby generating a biological response. Several intracellular proteins have been identified as phosphorylation substrates for the insulin receptor, the best-studied of which is insulin receptor substrate 1 or IRS-1. When IRS-1 is activa Continue reading >>

Office Of Science Outreach
Part 3: The Consequences of a High-Fructose Diet When fed fructose, the liver builds fatty acids and assembles them into triglycerides. It exports the triglycerides into the bloodstream, so that they can be taken up by fat cells for storage. The triglyceride-carrier protein is LDL, known as "bad cholesterol." It's a carrier of cholesterol, which attains a lower density by carrying additional triglycerides (which, being less dense than water or protein, make the carrier a "low-density" carrier protein.) Elevated triglycerides and cholesterol are associated with heart disease. Triglycerides are a part of the "metabolic syndrome" disease, which eventually manifests itself as Type 2 Diabetes. The transporter in liver cells, that moves triglycerides from the inside of the cell to the outside, and thus into the bloodstream, can only work so fast. If triglycerides are produced faster than the transporter can export them, the triglycerides build up inside liver cells. They form fat droplets. The liver accumulates fat. Now, in force-fed geese, fatty liver is called foie gras, but fatty liver is not what we want to have. Fatty liver is another of the pre-disposing factors to Type 2 Diabetes. Fructose also leads to alterations in the handling of dietary fat. This has been shown directly in mice. There are significant differences in mice fed identical diets, but with some having their diet supplemented with glucose and others having a supplement of fructose in the same caloric quantity. The glucose-fed mice, when subsequently given fat, metabolize the fat in the production of ATP (as illustrated above). The fructose-fed mice don't do this; they import the fat directly into fat cells for storage. Apparently, fructose not only is converted to fat by the liver, but it changes the way Continue reading >>

New Gene Found That Turns Carbs Into Fat, Could Be Target For Future Drugs
New gene found that turns carbs into fat, could be target for future drugs A gene that helps the body convert that big plate of holiday cookies you just polished off into fat could provide a new target for potential treatments for fatty liver disease, diabetes and obesity. Shown is an image of fatty liver tissue. The lipid has been stained red, and the liver cell nuclei are stained blue. (Image courtesy of The Sul Lab) Researchers at the University of California, Berkeley, are unlocking the molecular mechanisms of how our body converts dietary carbohydrates into fat, and as part of that research, they found that a gene with the catchy name BAF60c contributes to fatty liver, or steatosis. In the study, to be published online Dec. 6 in the journal Molecular Cell, the researchers found that mice that have had the BAF60c gene disabled did not convert carbohydrates to fat, despite eating a high-carb diet. This work brings us one step forward in understanding fatty liver disease resulting from an excessive consumption of carbohydrates, said the studys senior author, Hei Sook Sul, professor at UC Berkeleys Department of Nutritional Science and Toxicology. The discovery of this role of BAF60c may eventually lead to the development of treatment for millions of Americans with fatty liver and other related diseases. More than three-quarters of obese people and one-third of Americans have fatty liver, or steatosis, according to epidemiological studies. A diet excessively high in bread, pasta, rice, soda and other carbohydrates is a major risk factor for fatty liver, which is marked by the abnormal accumulation of fat within a liver cell. After a meal, carbohydrates are broken down into glucose, an immediate source of energy. Excess glucose gets stored in the liver as glycogen or, Continue reading >>

How Fat Cells Work
In the last section, we learned how fat in the body is broken down and rebuilt into chylomicrons, which enter the bloodstream by way of the lymphatic system. Chylomicrons do not last long in the bloodstream -- only about eight minutes -- because enzymes called lipoprotein lipases break the fats into fatty acids. Lipoprotein lipases are found in the walls of blood vessels in fat tissue, muscle tissue and heart muscle. Insulin When you eat a candy bar or a meal, the presence of glucose, amino acids or fatty acids in the intestine stimulates the pancreas to secrete a hormone called insulin. Insulin acts on many cells in your body, especially those in the liver, muscle and fat tissue. Insulin tells the cells to do the following: The activity of lipoprotein lipases depends upon the levels of insulin in the body. If insulin is high, then the lipases are highly active; if insulin is low, the lipases are inactive. The fatty acids are then absorbed from the blood into fat cells, muscle cells and liver cells. In these cells, under stimulation by insulin, fatty acids are made into fat molecules and stored as fat droplets. It is also possible for fat cells to take up glucose and amino acids, which have been absorbed into the bloodstream after a meal, and convert those into fat molecules. The conversion of carbohydrates or protein into fat is 10 times less efficient than simply storing fat in a fat cell, but the body can do it. If you have 100 extra calories in fat (about 11 grams) floating in your bloodstream, fat cells can store it using only 2.5 calories of energy. On the other hand, if you have 100 extra calories in glucose (about 25 grams) floating in your bloodstream, it takes 23 calories of energy to convert the glucose into fat and then store it. Given a choice, a fat cell w Continue reading >>

How Our Bodies Turn Food Into Energy
All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be used later. However, our bodies need insulin in order to use or store glucose for energy. Without insulin, glucose stays in the bloodstream, keeping blood sugar levels high. Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the amount of glucose in the bloodstream. Normally beta cells check the blood's glucose level every few seconds and sense when they need to speed up or slow down the amount of insulin they're making and releasing. When someone eats something high in carbohydrates, like a piece of bread, the glucose level in the blood rises and the beta cells trigger the pancreas to release more insulin into the bloodstream. When insulin is released from the pancreas, it travels through the bloodstream to the body's cells and tells the cell doors to open up to let the glucose in. Once inside, the cells convert glucose into energy to use right then or store it to use later. As glucose moves from the bloodstream into the cells, blood sugar levels start to drop. The beta cells in the pancreas can tell this is happening, so they slow down the amount of insulin they're making. At the same time, the pancreas slows down the amount of insulin that it's releasing into the bloodstream. When this happens, Continue reading >>

How Sugar Makes You Fat
Look at how many grams of sugar are in what you’re eating (on the nutritional label). Now divide that number by 4. That’s how many teaspoons of pure sugar you’re consuming. Kinda scary, huh? Sugar makes you fat and fatfree food isn’t really free of fat. I’ve said it before in multiple articles, but occasionally, I’ve had someone lean over my desk and say “How in the heck does sugar make you fat if there’s no fat in it?”. This article will answer that puzzler, and provide you with some helpful suggestions to achieve not only weight loss success, but improved body health. First, let’s make some qualifications. Sugar isn’t inherently evil. Your body uses sugar to survive, and burns sugar to provide you with the energy necessary for life. Many truly healthy foods are actually broken down to sugar in the body – through the conversion of long and complex sugars called polysaccharides into short and simple sugars called monosaccharides, such as glucose. In additions to the breakdown products of fat and protein, glucose is a great energy source for your body. However, there are two ways that sugar can sabotage your body and cause fat storage. Excess glucose is the first problem, and it involves a very simple concept. Anytime you have filled your body with more fuel than it actually needs (and this is very easy to do when eating foods with high sugar content), your liver’s sugar storage capacity is exceeded. When the liver is maximally full, the excess sugar is converted by the liver into fatty acids (that’s right – fat!) and returned to the bloodstream, where is taken throughout your body and stored (that’s right – as fat!) wherever you tend to store adipose fat cells, including, but not limited to, the popular regions of the stomach, hips, but Continue reading >>