diabetestalk.net

How Does Glucose Get Converted To Fat Inside Of A Cell

When Does Glucose Convert To Fat?

When Does Glucose Convert To Fat?

Despite the fact that eating a jelly doughnut seems to deposit fat directly on your hips, converting sugar to fat is actually a relatively complex chemical process. Sugar conversion to fat storage depends not only upon the type of foods you eat, but how much energy your body needs at the time you eat it. Video of the Day Your body converts excess dietary glucose into fat through the process of fatty acid synthesis. Fatty acids are required in order for your body to function properly, playing particularly important roles in proper brain functioning. There are two kinds of fatty acids; essential fatty acids and nonessential fatty acids. Essential fatty acids refer to fatty acids you must eat from your diet, as your body cannot make them. Nonessential fatty acids are made through the process of fatty acid synthesis. Fatty Acid Synthesis Fatty acids are long organic compounds having an acid group at one end and a methyl group at the other end. The location of their first double bond dictates whether they are in the omega 3, 6, or 9 fatty acid family. Fatty acid synthesis takes place in the cytoplasm of cells and requires some energy input. In other words, your body actually has to expend some energy in order to store fat. Glucose is a six-carbon sugar molecule. Your body first converts this molecule into two three-carbon pyruvate molecules through the process of glycolysis and then into acetyl CoA. When your body requires immediate energy, acetyl CoA enters the Citric Acid Cycle creating energy molecules in the form of ATP. When glucose intake exceeds your body's energy needs--for example, you eat an ice-cream sundae and then go relax on the sofa for five hours--your body has no need to create more energy molecules. Therefore, acetyl CoA begins the process of fatty acid syn Continue reading >>

Does Carbohydrate Become Body Fat?

Does Carbohydrate Become Body Fat?

Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

How Are Carbohydrates Converted Into Fat Deposits?

How Are Carbohydrates Converted Into Fat Deposits?

How are carbohydrates converted into fat deposits? There are two ways that carbohydrates and body fat interact. One is directly by turning into body fat, and the other is via insulin. Turning into body fat is like adding fat into the fat cells, whereas carbohydrates spiking insulin does not add anything to fat cells per se, but hinders the release. The former is like a + equation, where the latter is a double negative which results in something that seems positive. There is a process called de novo lipogenesis (literally: Creation of fat from non-fat sources) that can occur in the body. This process turns glucose into lipids, which are then stored as body fat. This process is normally quite inefficient in the body [1] , which suggests that carbohydrates cannot be stored as fat to a high degree. The process can be upregulated (enhanced) if dietary fat comprised almost none of the diet (lesser than 10%, as a rough estimate), if carbohydrate intake is excessively high for a period of a few days, or if one follows an obesogenic diet (diet that is likely to make you fat) for a prolonged period of time. [1] [2] [3] Carbohydrates spike insulin , which is a hormone that mediates glucose metabolism. Insulin is not good or bad, insulin is insulin. It can be thought of as a lever that switches the body from fat burning mode into carbohydrate burning mode. This allows carbohydrates (and glycogen) to be burnt at a greater rate, but directly reduces the ability of fat to be lost. Overall metabolic rate (calories burnt over the course of a day) does not change significantly, just where the calories come from. When insulin is spiked in presence of ingested dietary fat, the dietary fat can go into body fat stores and not be released since glucose from glycogen is being used in place of Continue reading >>

How Sugar Makes You Fat

How Sugar Makes You Fat

Look at how many grams of sugar are in what you’re eating (on the nutritional label). Now divide that number by 4. That’s how many teaspoons of pure sugar you’re consuming. Kinda scary, huh? Sugar makes you fat and fatfree food isn’t really free of fat. I’ve said it before in multiple articles, but occasionally, I’ve had someone lean over my desk and say “How in the heck does sugar make you fat if there’s no fat in it?”. This article will answer that puzzler, and provide you with some helpful suggestions to achieve not only weight loss success, but improved body health. First, let’s make some qualifications. Sugar isn’t inherently evil. Your body uses sugar to survive, and burns sugar to provide you with the energy necessary for life. Many truly healthy foods are actually broken down to sugar in the body – through the conversion of long and complex sugars called polysaccharides into short and simple sugars called monosaccharides, such as glucose. In additions to the breakdown products of fat and protein, glucose is a great energy source for your body. However, there are two ways that sugar can sabotage your body and cause fat storage. Excess glucose is the first problem, and it involves a very simple concept. Anytime you have filled your body with more fuel than it actually needs (and this is very easy to do when eating foods with high sugar content), your liver’s sugar storage capacity is exceeded. When the liver is maximally full, the excess sugar is converted by the liver into fatty acids (that’s right – fat!) and returned to the bloodstream, where is taken throughout your body and stored (that’s right – as fat!) wherever you tend to store adipose fat cells, including, but not limited to, the popular regions of the stomach, hips, but Continue reading >>

What Is Glucose?

What Is Glucose?

Glucose comes from the Greek word for "sweet." It's a type of sugar you get from foods you eat, and your body uses it for energy. As it travels through your bloodstream to your cells, it's called blood glucose or blood sugar. Insulin is a hormone that moves glucose from your blood into the cells for energy and storage. People with diabetes have higher-than-normal levels in their blood. Either they don't have enough insulin to move it through or their cells don't respond to insulin as well as they should. High blood glucose for a long period of time can damage your kidneys, eyes, and other organs. How Your Body Makes Glucose It mainly comes from foods rich in carbohydrates, like bread, potatoes, and fruit. As you eat, food travels down your esophagus to your stomach. There, acids and enzymes break it down into tiny pieces. During that process, glucose is released. It goes into your intestines where it's absorbed. From there, it passes into your bloodstream. Once in the blood, insulin helps glucose get to your cells. Energy and Storage Your body is designed to keep the level of glucose in your blood constant. Beta cells in your pancreas monitor your blood sugar level every few seconds. When your blood glucose rises after you eat, the beta cells release insulin into your bloodstream. Insulin acts like a key, unlocking muscle, fat, and liver cells so glucose can get inside them. Most of the cells in your body use glucose along with amino acids (the building blocks of protein) and fats for energy. But it's the main source of fuel for your brain. Nerve cells and chemical messengers there need it to help them process information. Without it, your brain wouldn't be able to work well. After your body has used the energy it needs, the leftover glucose is stored in little bundles Continue reading >>

Lecture16

Lecture16

All of your cellsneed glucose and oxygen to perform aerobic respiration. Your bodytakes in oxygen continuously but your cells, especially your nervecells, need glucose continuously as well. The different cells andorgans of your body coordinate to provide glucose and oxygen to allwhile taking into account the constraints of gathering and eating thefood that provides the glucose. As noted earlier, thenerve cells of your brain must have glucose to make the ATP theyneed. Brain cells need a steady supply of glucose for this purpose.Confusion, dizziness, and fainting occur if your blood glucose dropstoo low, a condition often called "hypoglycemia". This presents achallenge because you cannot eat continuously to maintain your bloodglucose in the desired range. All animals must be able to functionbetween meals, sometimes for long periods. Several cells andorgans of the digestive system cooperate to maintain blood glucoselevels between meals. a. Liver cellsconvert stored glycogen back into glucose and release it into theblood to maintain glucose levels between meals. b. Fat cellsin adipose tissue convert fats back into fatty acids and release theminto the blood. This does not help nerve cells, since they can't takeup fatty acids from the blood for aerobic respiration. The othercells of your body can use fatty acids, however, leaving more glucosefor the nerve cells. c. Musclecells can contribute to blood glucose but indirectly. Theglycogen in muscle cells can be converted back into glucose and usedby those cells to make ATP. This reduces the need to draw glucosefrom the blood but muscle cells cannot release glucose into the bloodfor other cells to use. Muscle cells can release pyruvate and lactate(from glycolysis) into the blood. This pyruvate and lactate is takenup and converte Continue reading >>

What Happens To Unburned Carbohydrates?

What Happens To Unburned Carbohydrates?

Your body uses mostly carbohydrates as well as fats for energy. Because the body doesn’t store carbs efficiently, they’re used first. Carbohydrates turn into glucose, which your body burns immediately or converts to glycogen to be stored in the muscles and liver for between meals. If you eat more calories from carbs or other sources than your body can use, the cells store the excess as fat. Of the three major nutrients -- carbohydrates, fat and protein -- the body burns carbs first for energy because they can’t be stored in great quantities. The carbohydrates in food get broken down into glucose, which moves into the small intestine, then the liver and into the blood. As blood sugar rises, the pancreas produces insulin, which signals the cells to take up sugar. Whatever glucose the cells don’t need immediately for energy is stored in the liver and muscles as glycogen. When the blood sugar levels fall -- such as between meals -- the liver releases glycogen. This cycle keeps your body supplied with a steady source of fuel. Insulin Resistance If you have insulin resistance or diabetes, the sugar-insulin cycle doesn’t work properly, leading to too much sugar and insulin circulating in the blood until eventually your body doesn’t produce enough insulin or is resistant to its effects. This is why people with diabetes or prediabetes often track the carbs they eat; eating too many carbohydrates, especially sugars and refined starches, can cause blood sugar and/or insulin to spike to potentially dangerous levels in people with diabetes. How Carbs Turn Into Fat When you eat too many calories, especially in the form of sugars and quickly burned starches, your body may reach its storage capacity for glycogen. The liver converts the stored sugars into triglycerides, or f Continue reading >>

Cell Energy And Cell Functions

Cell Energy And Cell Functions

Cells manage a wide range of functions in their tiny package — growing, moving, housekeeping, and so on — and most of those functions require energy. But how do cells get this energy in the first place? And how do they use it in the most efficient manner possible? Cells, like humans, cannot generate energy without locating a source in their environment. However, whereas humans search for substances like fossil fuels to power their homes and businesses, cells seek their energy in the form of food molecules or sunlight. In fact, the Sun is the ultimate source of energy for almost all cells, because photosynthetic prokaryotes, algae, and plant cells harness solar energy and use it to make the complex organic food molecules that other cells rely on for the energy required to sustain growth, metabolism, and reproduction (Figure 1). Cellular nutrients come in many forms, including sugars and fats. In order to provide a cell with energy, these molecules have to pass across the cell membrane, which functions as a barrier — but not an impassable one. Like the exterior walls of a house, the plasma membrane is semi-permeable. In much the same way that doors and windows allow necessities to enter the house, various proteins that span the cell membrane permit specific molecules into the cell, although they may require some energy input to accomplish this task (Figure 2). Complex organic food molecules such as sugars, fats, and proteins are rich sources of energy for cells because much of the energy used to form these molecules is literally stored within the chemical bonds that hold them together. Scientists can measure the amount of energy stored in foods using a device called a bomb calorimeter. With this technique, food is placed inside the calorimeter and heated until it bu Continue reading >>

Absorbing And Storing Energy: How The Body Controls Glucose

Absorbing And Storing Energy: How The Body Controls Glucose

Absorbing and Storing Energy: How the Body Controls Glucose Editors note: Physicians have a special place among the thinkers who have elaborated the argument for intelligent design. Perhaps thats because, more than evolutionary biologists, they are familiar with the challenges of maintaining a functioning complex system, the human body. With that in mind, Evolution News is delighted to offer this series, The Designed Body. For the complete series, see here . Dr. Glicksman practices palliative medicine for a hospice organization. Just like a car needs the energy, in the form of gasoline, to run properly, the body needs the energy in glucose to survive. When we havent eaten for a while, our blood glucose level drops and our stomach is empty, causing the hunger center in our brain to tell us to eat or drink something with calories. As I have explained in my last couple of articles, the complex molecules that are in what we eat and drink enter the gastrointestinal system, where digestive enzymes break them down into simpler molecules so the body can absorb them. Carbohydrates are broken down into simple sugars, like glucose, which are then absorbed into the blood. Tissues, such as the brain and other organs, rapidly absorb some of this glucose, to be used for their immediate energy needs. However, the amount of glucose absorbed after a meal is usually much more than what the tissues can use right away, causing excess. The body is able to chemically link these excess glucose molecules together to form a carbohydrate called glycogen. Most of the glycogen in the body is made and stored in the liver, with smaller amounts in the muscles, kidneys, and other tissues. Once the liver and other tissues have filled up their glycogen stores, any excess glucose is stored as fat, appare Continue reading >>

Carbohydrates, Proteins, Fats, And Blood Sugar

Carbohydrates, Proteins, Fats, And Blood Sugar

Carbohydrates, Proteins, Fats, and Blood Sugar The body uses three main nutrients to function carbohydrate , protein , and fat . These nutrients are digested into simpler compounds. Carbohydrates are used for energy (glucose). Fats are used for energy after they are broken into fatty acids. Protein can also be used for energy, but the first job is to help with making hormones, muscle, and other proteins. Nutrients needed by the body and what they are used for Broken down into glucose, used to supply energy to cells. Extra is stored in the liver. Broken down into amino acids , used to build muscle and to make other proteins that are essential for the body to function. Broken down into fatty acids to make cell linings and hormones . Extra is stored in fat cells. After a meal, the blood sugar (glucose) level rises as carbohydrate is digested. This signals the beta cells of the pancreas to release insulin into the bloodstream. Insulin helps glucose enter the body's cells to be used for energy. If all the glucose is not needed for energy, some of it is stored in fat cells and in the liver as glycogen. As sugar moves from the blood to the cells, the blood glucose level returns to a normal between-meal range. Several hormones and processes help regulate the blood sugar level and keep it within a certain range (70 mg/dL to 120 mg/dL). When the blood sugar level falls below that range, which may happen between meals, the body has at least three ways of reacting: Cells in the pancreas can release glucagon , a hormone that signals the body to produce glucose from glycogen in the muscles and liver and release it into the blood. When glycogen is used up, muscle protein is broken down into amino acids. The liver uses amino acids to create glucose through biochemical reactions (gluco Continue reading >>

Physiologic Effects Of Insulin

Physiologic Effects Of Insulin

Stand on a streetcorner and ask people if they know what insulin is, and many will reply, "Doesn't it have something to do with blood sugar?" Indeed, that is correct, but such a response is a bit like saying "Mozart? Wasn't he some kind of a musician?" Insulin is a key player in the control of intermediary metabolism, and the big picture is that it organizes the use of fuels for either storage or oxidation. Through these activities, insulin has profound effects on both carbohydrate and lipid metabolism, and significant influences on protein and mineral metabolism. Consequently, derangements in insulin signalling have widespread and devastating effects on many organs and tissues. The Insulin Receptor and Mechanism of Action Like the receptors for other protein hormones, the receptor for insulin is embedded in the plasma membrane. The insulin receptor is composed of two alpha subunits and two beta subunits linked by disulfide bonds. The alpha chains are entirely extracellular and house insulin binding domains, while the linked beta chains penetrate through the plasma membrane. The insulin receptor is a tyrosine kinase. In other words, it functions as an enzyme that transfers phosphate groups from ATP to tyrosine residues on intracellular target proteins. Binding of insulin to the alpha subunits causes the beta subunits to phosphorylate themselves (autophosphorylation), thus activating the catalytic activity of the receptor. The activated receptor then phosphorylates a number of intracellular proteins, which in turn alters their activity, thereby generating a biological response. Several intracellular proteins have been identified as phosphorylation substrates for the insulin receptor, the best-studied of which is insulin receptor substrate 1 or IRS-1. When IRS-1 is activa Continue reading >>

Dynamic Adaptation Of Nutrient Utilization In Humans

Dynamic Adaptation Of Nutrient Utilization In Humans

Most cells use glucose for ATP synthesis, but there are other fuel molecules equally important for maintaining the body's equilibrium or homeostasis. Indeed, although the oxidation pathways of fatty acids, amino acids, and glucose begin differently, these mechanisms ultimately converge onto a common pathway, the TCA cycle, occurring within the mitochondria (Figure 1). As mentioned earlier, the ATP yield obtained from lipid oxidation is over twice the amount obtained from carbohydrates and amino acids. So why don't all cells simply use lipids as fuel? In fact, many different cells do oxidize fatty acids for ATP production (Figure 2). Between meals, cardiac muscle cells meet 90% of their ATP demands by oxidizing fatty acids. Although these proportions may fall to about 60% depending on the nutritional status and the intensity of contractions, fatty acids may be considered the major fuel consumed by cardiac muscle. Skeletal muscle cells also oxidize lipids. Indeed, fatty acids are the main source of energy in skeletal muscle during rest and mild-intensity exercise. As exercise intensity increases, glucose oxidation surpasses fatty acid oxidation. Other secondary factors that influence the substrate of choice for muscle include exercise duration, gender, and training status. Another tissue that utilizes fatty acids in high amount is adipose tissue. Since adipose tissue is the storehouse of body fat, one might conclude that, during fasting, the source of fatty acids for adipose tissue cells is their own stock. Skeletal muscle and adipose tissue cells also utilize glucose in significant proportions, but only at the absorptive stage - that is, right after a regular meal. Other organs that use primarily fatty acid oxidation are the kidney and the liver. The cortex cells of the Continue reading >>

From Sugar To Fat

From Sugar To Fat

a Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA b Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA a Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA b Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA Address for correspondence: Laurie H. Glimcher. Voice: 617-432-0622; fax: 617-432-0084. [email protected] ; Ann-Hwee Lee. Voice: 617-432-0697; fax: 617-432-0697. [email protected] The publisher's final edited version of this article is available at Ann N Y Acad Sci See other articles in PMC that cite the published article. Lipogenesis occurs primarily in the liver, where dietary carbohydrates control the expression of key enzymes in glycolytic and lipogenic pathways. We have recently discovered that the transcription factor XBP1, best known as a key regulator of the unfolded protein response (UPR), is required for de novo fatty acid synthesis in the liver, a function unrelated to its role in the UPR. 1 XBP1 protein expression is induced in the liver by a high carbohydrate diet and directly controls the induction of critical genes involved in fatty acid synthesis. Specific deletion of XBP1 in adult liver using an inducible approach results in profound hypocholesterolemia and hypotriglyceridemia, which could be attributed to diminished production of lipids in the liver. Notably, this phenotype is not associated with fatty liver (hepatic steatosis) or significant compromise in protein secretion. XBP1 joins an already rich field of transcriptional regulatory proteins in the control of hepatic lipogenesis. Its function in lipogenesis appears to be highly significant as evidenced by the phen Continue reading >>

New Gene Found That Turns Carbs Into Fat, Could Be Target For Future Drugs

New Gene Found That Turns Carbs Into Fat, Could Be Target For Future Drugs

New gene found that turns carbs into fat, could be target for future drugs A gene that helps the body convert that big plate of holiday cookies you just polished off into fat could provide a new target for potential treatments for fatty liver disease, diabetes and obesity. Shown is an image of fatty liver tissue. The lipid has been stained red, and the liver cell nuclei are stained blue. (Image courtesy of The Sul Lab) Researchers at the University of California, Berkeley, are unlocking the molecular mechanisms of how our body converts dietary carbohydrates into fat, and as part of that research, they found that a gene with the catchy name BAF60c contributes to fatty liver, or steatosis. In the study, to be published online Dec. 6 in the journal Molecular Cell, the researchers found that mice that have had the BAF60c gene disabled did not convert carbohydrates to fat, despite eating a high-carb diet. This work brings us one step forward in understanding fatty liver disease resulting from an excessive consumption of carbohydrates, said the studys senior author, Hei Sook Sul, professor at UC Berkeleys Department of Nutritional Science and Toxicology. The discovery of this role of BAF60c may eventually lead to the development of treatment for millions of Americans with fatty liver and other related diseases. More than three-quarters of obese people and one-third of Americans have fatty liver, or steatosis, according to epidemiological studies. A diet excessively high in bread, pasta, rice, soda and other carbohydrates is a major risk factor for fatty liver, which is marked by the abnormal accumulation of fat within a liver cell. After a meal, carbohydrates are broken down into glucose, an immediate source of energy. Excess glucose gets stored in the liver as glycogen or, Continue reading >>

Teaching The Body To Use Fat As Primary Energy At Rest - Changing Body Composition.

Teaching The Body To Use Fat As Primary Energy At Rest - Changing Body Composition.

Sugar in your food generally requires little to no digesting or processing and will be in your bloodstream inside 60 minutes after eating. In response, blood sugar shoots up for a bit before coming back down rapidly a short while later. Other carbohydrates, referred to as complex carbohydrates, will be sugar in your bloodstream as well eventually. It takes your digestive system a little longer to convert complex carbs into simple sugars, so blood sugar will rise and fall a bit slower depending on a few factors. These include the type of carbohydrate (how "complex" it is) and how fibrous and/or fatty the food is. Once in the blood, your metabolism begins to use sugar in a variety of ways. Particularly if you are active or exercising, some of the sugar in your blood will be used quickly for energy. Glucose and/or fructose are the end-products of all carbohydrate breakdown. These simple sugars enter into either glycolysis (for glucose) or fructolysis (for fructose). In these processes, the metabolism uses the simple sugars to generate the compounds that, in turn, power all of the body's other metabolic processes. Put more simply, glycolysis and fructolysis convert simple sugars into energy. (A quick note on fiber: fiber is classified as a type of carbohydrate and is listed on nutrition labels under the carbohydrate section. Most fiber will pass through the body undigested. The remainder will be digested quite slowly over the course of many hours. Fiber does not have a meaningful effect on blood sugar.) Most of the time, however, sugar is not used immediately but is stored in cells for use later. This is where insulin comes into the equation. Insulin is a protein that acts as a hormone in the digestive process. When a protein is classified as a hormone, it means that it's p Continue reading >>

More in ketosis