diabetestalk.net

How Does Dka Affect Potassium?

Hyperkalaemia In Adults

Hyperkalaemia In Adults

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Dietary Potassium article more useful, or one of our other health articles. Description Hyperkalaemia is defined as plasma potassium in excess of 5.5 mmol/L[1]. The European Resuscitation Guidelines further classify hyperkalaemia as: Mild - 5.5-5.9 mmol/L. Moderate - 6.0-6.4 mmol/L. Severe - >6.5 mmol/L. Potassium is the most abundant intracellular cation - 98% of it being located intracellularly. Hyperkalaemia has four broad causes: Renal causes - eg, due to decreased excretion or drugs. Increased circulation of potassium - can be exogenous or endogenous. A shift from the intracellular to the extracellular space. Pseudohyperkalaemia. Epidemiology The time of greatest risk is at the extremes of life. Reported incidence in hospitals is 1-10%, with reduced renal function causing a five-fold increase in risk in patients on potassium-influencing drugs[2]. Men are more likely than women to develop hyperkalaemia, whilst women are more likely to experience hypokalaemia. Renal causes Acute kidney injury (AKI). Chronic kidney disease (CKD): Normally all potassium that is ingested is absorbed and excretion is 90% renal and 10% alimentary. Most excretion by the gut is via the colon and in CKD this can maintain a fairly normal blood level of potassium. It seems likely that the elevated potassium levels in CKD trigger the excretion of potassium via the colon[3]. Patients with CKD must be careful of foods rich in potassium. Hyperkalaemic renal tubular acidosis. Mineralocorticoid deficiency. Medicines that interfere with potassium excretion - eg, amiloride, spironolac Continue reading >>

Diabetic Ketoacidosis: A Serious Complication

Diabetic Ketoacidosis: A Serious Complication

A balanced body chemistry is crucial for a healthy human body. A sudden drop in pH can cause significant damage to organ systems and even death. This lesson takes a closer look at a condition in which the pH of the body is severely compromised called diabetic ketoacidosis. Definition Diabetic ketoacidosis, sometimes abbreviated as DKA, is a condition in which a high amount of acid in the body is caused by a high concentration of ketone bodies. That definition might sound complicated, but it's really not. Acidosis itself is the state of too many hydrogen ions, and therefore too much acid, in the blood. A pH in the blood leaving the heart of 7.35 or less indicates acidosis. Ketones are the biochemicals produced when fat is broken down and used for energy. While a healthy body makes a very low level of ketones and is able to use them for energy, when ketone levels become too high, they make the body's fluids very acidic. Let's talk about the three Ws of ketoacidosis: who, when, and why. Type one diabetics are the group at the greatest risk for ketoacidosis, although the condition can occur in other groups of people, such as alcoholics. Ketoacidosis usually occurs in type one diabetics either before diagnosis or when they are subjected to a metabolic stress, such as a severe infection. Although it is possible for type two diabetics to develop ketoacidosis, it doesn't happen as frequently. To understand why diabetic ketoacidosis occurs, let's quickly review what causes diabetes. Diabetics suffer from a lack of insulin, the protein hormone responsible for enabling glucose to get into cells. This inability to get glucose into cells means that the body is forced to turn elsewhere to get energy, and that source is fat. As anyone who exercises or eats a low-calorie diet knows, fa Continue reading >>

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Lack of insulin, thus no proper metabolism of glucose, ketones form, pH goes down, H+ concentration rises, our body tries to compensate by exchanging K+ from inside the cells for H+ outside the cells, hoping to lower H+ concentration, but at the same time elevating serum potassium. Most people are seriously dehydrated, so are in acute kidney failure, thus the kidneys aren’t able to excrete the excess of potassium from the blood, compounding the problem. On the other hand, many in reality are severely potassium depleted, so once lots of fluid so rehydration and a little insulin is administered serum potassium will plummet, so needs to be monitored 2 hourly - along with glucose, sodium and kidney function - to prevent severe hypokalemia causing fatal arrhythmias, like we experienced decades ago when this wasn’t so well understood yet. In practice, once the patient started peeing again, we started adding potassium chloride to our infusion fluids, the surplus potassium would be peed out by our kidneys so no risk for hyperkalemia. Continue reading >>

Potassium Balance In Acid-base Disorders

Potassium Balance In Acid-base Disorders

INTRODUCTION There are important interactions between potassium and acid-base balance that involve both transcellular cation exchanges and alterations in renal function [1]. These changes are most pronounced with metabolic acidosis but can also occur with metabolic alkalosis and, to a lesser degree, respiratory acid-base disorders. INTERNAL POTASSIUM BALANCE Acid-base disturbances cause potassium to shift into and out of cells, a phenomenon called "internal potassium balance" [2]. An often-quoted study found that the plasma potassium concentration will rise by 0.6 mEq/L for every 0.1 unit reduction of the extracellular pH [3]. However, this estimate was based upon only five patients with a variety of disturbances, and the range was very broad (0.2 to 1.7 mEq/L). This variability in the rise or fall of the plasma potassium in response to changes in extracellular pH was confirmed in subsequent studies [2,4]. Metabolic acidosis — In metabolic acidosis, more than one-half of the excess hydrogen ions are buffered in the cells. In this setting, electroneutrality is maintained in part by the movement of intracellular potassium into the extracellular fluid (figure 1). Thus, metabolic acidosis results in a plasma potassium concentration that is elevated in relation to total body stores. The net effect in some cases is overt hyperkalemia; in other patients who are potassium depleted due to urinary or gastrointestinal losses, the plasma potassium concentration is normal or even reduced [5,6]. There is still a relative increase in the plasma potassium concentration, however, as evidenced by a further fall in the plasma potassium concentration if the acidemia is corrected. A fall in pH is much less likely to raise the plasma potassium concentration in patients with lactic acidosis Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Tweet Diabetic ketoacidosis (DKA) is a dangerous complication faced by people with diabetes which happens when the body starts running out of insulin. DKA is most commonly associated with type 1 diabetes, however, people with type 2 diabetes that produce very little of their own insulin may also be affected. Ketoacidosis is a serious short term complication which can result in coma or even death if it is not treated quickly. Read about Diabetes and Ketones What is diabetic ketoacidosis? DKA occurs when the body has insufficient insulin to allow enough glucose to enter cells, and so the body switches to burning fatty acids and producing acidic ketone bodies. A high level of ketone bodies in the blood can cause particularly severe illness. Symptoms of DKA Diabetic ketoacidosis may itself be the symptom of undiagnosed type 1 diabetes. Typical symptoms of diabetic ketoacidosis include: Vomiting Dehydration An unusual smell on the breath –sometimes compared to the smell of pear drops Deep laboured breathing (called kussmaul breathing) or hyperventilation Rapid heartbeat Confusion and disorientation Symptoms of diabetic ketoacidosis usually evolve over a 24 hour period if blood glucose levels become and remain too high (hyperglycemia). Causes and risk factors for diabetic ketoacidosis As noted above, DKA is caused by the body having too little insulin to allow cells to take in glucose for energy. This may happen for a number of reasons including: Having blood glucose levels consistently over 15 mmol/l Missing insulin injections If a fault has developed in your insulin pen or insulin pump As a result of illness or infections High or prolonged levels of stress Excessive alcohol consumption DKA may also occur prior to a diagnosis of type 1 diabetes. Ketoacidosis can occasional Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Understand the management of patients with diabetic ketoacidosis and other hyperglycemic emergencies. ​ The acute onset of hyperglycemia with attendant metabolic derangements is a common presentation in all forms of diabetes mellitus. The most current data from the National Diabetes Surveillance Program of the Centers for Disease Control and Prevention estimate that during 2005-2006, at least 120,000 hospital discharges for diabetic ketoacidosis (DKA) occurred in the United States,(1) with an unknown number of discharges related to hyperosmolar hyperglycemic state (HHS). The clinical presentations of DKA and HHS can overlap, but they are usually separately characterized by the presence of ketoacidosis and the degree of hyperglycemia and hyperosmolarity, though HHS will occasionally have some mild degree of ketosis. DKA is defined by a plasma glucose level >250 mg/dL, arterial pH <7.3, the presence of serum ketones, a serum bicarbonate measure <18 mEq/L, and a high anion gap metabolic acidosis. The level of normal anion gap may vary slightly by individual institutional standards. The anion gap also needs to be corrected in the presence of hypoalbuminemia, a common condition in the critically ill. Adjusted anion gap = observed anion gap + 0.25 * ([normal albumin]-[observed albumin]), where the given albumin concentrations are in g/L; if given in g/dL, the correction factor is 2.5.(3) HHS is defined by a plasma glucose level >600 mg/dL, with an effective serum osmolality >320 mOsm/kg. HHS was originally named hyperosmolar hyperglycemic nonketotic coma; however, this name was changed because relatively few patients exhibit coma-like symptoms. Effective serum osmolality = 2*([Na] + [K]) + glucose (mg/dL)/18.(2) Urea is freely diffusible across cell membranes, thus it will Continue reading >>

The Power Of Potassium

The Power Of Potassium

We’ve talked about several different minerals in past blog entries. Potassium is the mineral of choice for this week’s post for several reasons, and it’s a mineral that people with kidney problems should be sure to pay close attention to. What potassium does in the body First, let’s explore what potassium does in the body. This mineral is often referred to as an “electrolyte.” Electrolytes are electrically charged particles, called ions, which our cells use to maintain voltage across our cell membranes and carry electrical impulses, such as nerve impulses, to other cells. (Bet you didn’t think you had all this electrical activity in your body, did you?) Some of the main electrolytes in our bodies, besides potassium, are sodium, chloride, calcium, and magnesium. Your kidneys help regulate the amount of electrolytes in the body. Potassium’s job is to help nerve conduction, help regulate your heartbeat, and help your muscles contract. It also works to maintain proper fluid balance between your cells and body fluids. The body is a fine-tuned machine in that, as long as it’s healthy and functioning properly, things will work as they should. This means that, as long as your kidneys are working up to par, they’ll regulate the amount of potassium that your body needs. However, people with diabetes who have kidney disease need to be especially careful of their potassium intake, as levels can get too high in the body when the kidneys don’t work as they should. Too much potassium is just as dangerous as too little. Your physician can measure the amount of potassium in your blood with a simple blood test. A normal, or “safe” level of potassium is between 3.7 and 5.2 milliequivalents per liter (mEq/L). Levels below or above this range are a cause for concer Continue reading >>

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketoacidosis (DKA) is a dangerous complication of diabetes caused by a lack of insulin in the body. Diabetic ketoacidosis occurs when the body is unable to use blood sugar (glucose) because there isn't enough insulin. Instead, it breaks down fat as an alternative source of fuel. This causes a build-up of a by-product called ketones. Most cases of diabetic ketoacidosis occur in people with type 1 diabetes, although it can also be a complication of type 2 diabetes. Symptoms of diabetic ketoacidosis include: passing large amounts of urine feeling very thirsty vomiting abdominal pain Seek immediate medical assistance if you have any of these symptoms and your blood sugar levels are high. Read more about the symptoms of diabetic ketoacidosis. Who is affected by diabetic ketoacidosis? Diabetic ketoacidosis is a relatively common complication in people with diabetes, particularly children and younger adults who have type 1 diabetes. Younger children under four years of age are thought to be most at risk. In about 1 in 4 cases, diabetic ketoacidosis develops in people who were previously unaware they had type 1 diabetes. Diabetic ketoacidosis accounts for around half of all diabetes-related hospital admissions in people with type 1 diabetes. Diabetic ketoacidosis triggers These include: infections and other illnesses not keeping up with recommended insulin injections Read more about potential causes of diabetic ketoacidosis. Diagnosing diabetic ketoacidosis This is a relatively straightforward process. Blood tests can be used to check your glucose levels and any chemical imbalances, such as low levels of potassium. Urine tests can be used to estimate the number of ketones in your body. Blood and urine tests can also be used to check for an underlying infec Continue reading >>

Diabetic Ketoacidosis: Difference Between Potassium Determined By Blood Gas Analysis

Diabetic Ketoacidosis: Difference Between Potassium Determined By Blood Gas Analysis

ORIGINAL ARTICLE versus plasma measurement Cetoacidose diabética: diferença entre as concentrações do potássio na gasometria sanguínea versus potássio plasmático Fernando César RoblesI; Daniel Laguna NetoI; Fábio Guirado DiasI; Márcia SpressãoI; Priscila Nascimbeni MatosI; José Antônio CordeiroII; Antônio Carlos PiresI IDepartament of Endocrinology and Metabology, School of Medicine of São Jose do Rio Preto (Famerp), São Jose do Rio Preto, SP, Brazil IIDepartament of Epidemiology and Collective Health Famerp, São Jose do Rio Preto, SP, Brazil ABSTRACT OBJECTIVE: To evaluate the accuracy of potassium concentrations measured by blood gas analysis (PBG) compared with laboratory serum potassium (LSP), in the initial care of patients with diabetic ketoacidosis (DKA). SUBJECTS AND METHODS: Fifty three patients with diabetes mellitus were evaluated in a retrospective analysis. PBG was carried out using the Radiometer ABL 700 (Radiometer Copenhagen®), and results were compared with LSP ADVIA 1650 Chemistry system (Siemens®), the gold standard method. Both methods are based on potentiometry. RESULTS: Mean PBG was 3.66 mmol/L and mean LSP was 4.79 mmol/L. Mean difference between PBG and LSP was -1.13 mmol/L (p < 0.0005, 95% CI, -1.39 to -0,86). Lin concordance correlation coefficient was rc = 0.28 (95% CIb, 0.10 to 0.45), demonstrating low concordance between the methods. CONCLUSION: Although PBG measurement is faster and easier, it should not be used as a surrogate for LSP in the clinical treatment of DKA. Keywords: Diabetic ketoacidosis; serum potassium concentration; blood gas analysis of potassium. RESUMO OBJETIVO: Avaliar a acurácia da mensuração da concentração de potássio realizado nos analisa-dores de gasometria sanguínea (PGS) em relação ao p Continue reading >>

More in ketosis