diabetestalk.net

How Does Chloride Cause Metabolic Acidosis?

Sid Hyperchloremic Acidosis

Sid Hyperchloremic Acidosis

Strong ions are cations and anions that exist as charged particles dissociated from their partner ions at physiologic pH. The SID (Strong Ion Difference) is the difference between the positively- and negatively-charged strong ions in plasma. This method of evaluating acid-base disorders was developed to help determine the mechanism of the disorder rather than simply categorizing them into metabolic vs. respiratory acidosis/alkalosis as with the Henderson-Hasselbalch equation. Strong cations predominate in the plasma at physiologic pH leading to a net positive plasma charge of approximately +40: SID = [strong cations] [strong anions] = [Na+ + K+ + Ca2+ + Mg2+] [Cl- + lactate- + SO42-] Disturbances that increase the SID increase the blood pH while disorders that decrease the SID lower the plasma pH. According to the law of electroneutrality the sum of positive charges is equal to the sum of negative charges. Therefore the SID must be equal to the sum of weak anions in the body (such as bicarbonate, albumin, and phosphate). Hyperchloremic acidosis may result from chloride replacing lost bicarbonate. Such bicarbonate-wasting conditions may be seen in the kidneys (renal tubular acidosis) or the GI tract (diarrhea). This may also occur with aggressive volume resuscitation with normal saline (>30cc/kg/hr) due to excessive chloride administration impairing bicarbonate resorption in the kidneys. The strong ion difference of normal saline is 0 (Na+ = 154mEq/L and Cl- = 154mEq/L SID = 154 154 = 0). Therefore, aggressive administration of NS will decrease the plasma SID causing an acidosis. Administering a solution with a high SID such as sodium bicarbonate should be expected to treat this strong ion acidosis. Continue reading >>

Metabolic Acidosis And Alkalosis

Metabolic Acidosis And Alkalosis

Page Index Metabolic Acidosis. Metabolic Alkalosis Emergency Therapy Treating Metabolic Acidosis Calculating the Dose Use Half the Calculated Dose Reasons to Limit the Bicarbonate Dose: Injected into Plasma Volume Fizzes with Acid Causes Respiratory Acidosis Raises Intracellular PCO2 Subsequent Residual Changes Metabolic Acidosis. The following is a brief summary. For additional information visit: E-Medicine (Christie Thomas) or Wikepedia Etiology: There are many causes of primary metabolic acidosis and they are commonly classified by the anion gap: Metabolic Acidosis with a Normal Anion Gap: Longstanding diarrhea (bicarbonate loss) Uretero-sigmoidostomy Pancreatic fistula Renal Tubular Acidosis Intoxication, e.g., ammonium chloride, acetazolamide, bile acid sequestrants Renal failure Metabolic Acidosis with an Elevated Anion Gap: lactic acidosis ketoacidosis chronic renal failure (accumulation of sulfates, phosphates, uric acid) intoxication, e.g., salicylates, ethanol, methanol, formaldehyde, ethylene glycol, paraldehyde, INH, toluene, sulfates, metformin. rhabdomyolysis For further details visit: E-Medicine (Christie Thomas). Treating Severe Metabolic Acidosis. The ideal treatment for metabolic acidosis is correction of the underlying cause. When urgency dictates more rapid correction, treatment is based on clinical considerations, supported by laboratory evidence. The best measure of the level of metabolic acidosis is the Standard Base Excess (SBE) because it is independent of PCO2. If it is decided to administer bicarbonate, the SBE and the size of the treatable space are used to calculate the dose required: Metabolic Alkalosis Etiology: Primary Metabolic alkalosis may occur from various causes including: Loss of acid via the urine, stools, or vomiting Transfer of Continue reading >>

Causes And Effects Of Hyperchloremic Acidosis

Causes And Effects Of Hyperchloremic Acidosis

Causes and effects of hyperchloremic acidosis 1Institute of Child Health, University of Liverpool, Eaton Road, Liverpool L12 2AP, UK This article has been cited by other articles in PMC. Gunnerson and colleagues [ 1 ] found in their retrospective study that critically ill patients with lactate acidosis had a higher mortality compared to patients with hyperchloremic acidosis, whose mortality was not significantly different from patients with no acidosis. Because of its iatrogenic etiology the authors commented that it is reassuring that hyperchloremic acidosis is not associated with an increased mortality. Previous randomized controlled trials have, however, generated concerns regarding the adverse effects of hyperchloremic acidosis associated with rapid isotonic saline administration. Rapid isotonic saline infusion predictably results in hyperchloremic acidosis [ 2 ]. The acidosis is due to a reduction in the strong anion gap by an excessive rise in plasma chloride as well as excessive renal bicarbonate elimination. In a randomized controlled trial with a mixed group of patients undergoing major surgery, isotonic saline infusion was compared to Hartmann's solution with 6% hetastarch with a balanced electrolyte and glucose solution. Two-thirds of patients in the isotonic saline group but none in the balanced fluid group developed hyperchloremic metabolic acidosis [ 3 ]. The hyperchloremic acidosis was associated with reduced gastric mucosal perfusion on gastric tonometry. Another randomized double blind trial of isotonic saline versus lactated Ringer's in patients undergoing aortic reconstructive surgery confirmed this result and the acidosis required interventions like bicarbonate infusion and was associated with the application of more blood products [ 4 ]. Hyperchlor Continue reading >>

Mechanism Of Hyperchloremic Metabolic Acidosis | Anesthesiology | Asa Publications

Mechanism Of Hyperchloremic Metabolic Acidosis | Anesthesiology | Asa Publications

Mechanism of Hyperchloremic Metabolic Acidosis Lawrence R. Miller, MD ; Jonathan H. Waters, MD ; Charlton Provost Department of Anesthesiology FHP, Inc., Fountain Valley, California, Department of Anesthesiology, University of California, Irvine Medical Center, 101 City Drive South, Route 81A, Orange, California 92668. Mechanism of Hyperchloremic Metabolic Acidosis Anesthesiology 2 1996, Vol.84, 482-483.. doi: Anesthesiology 2 1996, Vol.84, 482-483.. doi: Lawrence R. Miller, Jonathan H. Waters, Charlton Provost; Mechanism of Hyperchloremic Metabolic Acidosis. Anesthesiology 1996;84(2):482-483.. 2018 American Society of Anesthesiologists Mechanism of Hyperchloremic Metabolic Acidosis You will receive an email whenever this article is corrected, updated, or cited in the literature. You can manage this and all other alerts in My Account To the Editor:--Several points in the case report "Transient Perioperative Metabolic Acidosis in a Patient with Ileal Bladder Augmentation" [1] merit further discussion. We do not believe that the transient perioperative hyperchloremic metabolic acidosis in this patient required the presence of the ileal bladder augmentation. We accept that prolonged contact of urine with bowel mucosa will allow for water reabsorption, passive chloride reabsorption, and active HCO3sup - secretion, leading to a net HCO sub 3 sup - loss and metabolic acidosis. In this patient, an indwelling urinary catheter was placed preoperatively, and although the catheter was transiently obstructed at the initiation of surgery, the decreased time of contact between the urine and bowel mucosa inherent with bladder drainage mitigates the importance of the ileal augmented bladder. In our opinion, the principal reason for the acidosis was the large chloride load infused into Continue reading >>

Physiological Effects Of Hyperchloraemia And Acidosis

Physiological Effects Of Hyperchloraemia And Acidosis

Physiological effects of hyperchloraemia and acidosis Chelsea and Westminster NHS Foundation Trust Chelsea and Westminster NHS Foundation Trust BJA: British Journal of Anaesthesia, Volume 101, Issue 2, 1 August 2008, Pages 141150, J. M. Handy, N. Soni; Physiological effects of hyperchloraemia and acidosis, BJA: British Journal of Anaesthesia, Volume 101, Issue 2, 1 August 2008, Pages 141150, The advent of balanced solutions for i.v. fluid resuscitation and replacement is imminent and will affect any specialty involved in fluid management. Part of the background to their introduction has focused on the non-physiological nature of normal saline solution and the developing science about the potential problems of hyperchloraemic acidosis. This review assesses the physiological significance of hyperchloraemic acidosis and of acidosis in general. It aims to differentiate the effects of the causes of acidosis from the physiological consequences of acidosis. It is intended to provide an assessment of the importance of hyperchloraemic acidosis and thereby the likely benefits of balanced solutions. Hyperchloraemic acidosis is increasingly recognized as a clinical entity, a new enemy within, that had gone otherwise unnoticed for decades. Although any associated morbidity may be subtle at present, there is a trend in current evidence to suggest that hyperchloraemic acidosis may have adverse consequences which may be circumvented by the use of balanced solutions. These consequences, both theoretical and clinical, may result from hyperchloraemia, acidosis, or both. There is some evidence of hyperchloraemia causing problems, but at present the clinical relevance is uncertain. The literature does appear to be unified in stating that acidosis results in adverse physiological effects bu Continue reading >>

Why Is Saline So Acidic (and Does It Really Matter?)

Why Is Saline So Acidic (and Does It Really Matter?)

Int J Med Sci 2013; 10(6):747-750. doi:10.7150/ijms.5868 Why Is Saline So Acidic (and Does It Really Matter?) Consultant, Intensive Care Unit, Royal Adelaide Hospital; Clinical Senior Lecturer, Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License . See for full terms and conditions. Reddi BA. Why Is Saline So Acidic (and Does It Really Matter?). Int J Med Sci 2013; 10(6):747-750. doi:10.7150/ijms.5868. Available from Commercial 0.9% saline solution for infusion has a pH around 5.5. There are many reasons for this acidity, some of them still obscure. It is also true that infusion of normal saline can lead to metabolic acidaemia, yet the link between the acidity of saline solution and the acidaemia it can engender is not straightforward. This commentary draws together the known and putative sources of acidity in saline solutions: it turns out that the acidity of saline solution is essentially unrelated to the acidaemia complicating saline infusion. Keywords: saline, acidaemia, titratable acidity, crystalloid, balanced solution, Grotthuss. One might well think that ordinary commercial 0.9% saline solution for infusion would be neutral, with a pH of 7. In fact it is quite acidic: pH being reported as low as 4.6. 1 Why does this simple solution have a pH so far removed from the physiology it is designed to support? And should junior doctors be concerned about what impact this in vitro acidity has on their patients? It is widely recognized that resuscitation with 0.9% saline can cause acidaemia, but oddly enough the natural assumption that this is because of the intrinsic acidity of the infusion fluid turns out to be wrong. As we shall Continue reading >>

Hyperchloremia Why And How - Sciencedirect

Hyperchloremia Why And How - Sciencedirect

Volume 36, Issue 4 , JulyAugust 2016, Pages 347-353 Hyperchloremia Why and howHipercloremia: por qu y cmo Author links open overlay panel Glenn T.Nagami Open Access funded by Sociedad Espaola de Nefrologa Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of clinical conditions. The kidney plays an important role in the regulation of chloride concentration through a variety of transporters that are present along the nephron. Nevertheless, hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia will, to a large extent, determine how to treat this electrolyte disturbance. La hipercloremia es una alteracin electroltica frecuente que se asocia a una serie de distintos trastornos clnicos. El rin desempea una funcin importante en la regulacin de la concentracin de cloruro a travs de diversos transportadores que se encuentran a lo largo de la nefrona. Sin embargo, puede aparecer hipercloremia cuando la prdida hdrica sea mayor que la de sodio y cloruro; cuando se sobrepase la capacidad de excretar el cloruro en exceso; o cuando la concentracin srica de bicarbonato sea baja y al mismo tiempo haya un aumento de cloruro, como sucede en la acidosis metablica con brecha aninica normal o en la alcalosis respiratoria. La heterognea naturaleza de las causas subyacentes de la hipercloremia determinar, en gran medida, el modo de tratar esta alteracin electroltica. Continue reading >>

Normal Saline Intoxication - Deranged Physiology

Normal Saline Intoxication - Deranged Physiology

Uncontrolled pancreatic secretions as a cause of acidosis The overzealous administration of sodium chloride causes a normal anion gap metabolic acidosis by decreasing the strong ion difference. This is the archetypal normal anion gap acidosis. Previously discussed calculations suggest that every bag of saline increases the serum chloride by 3mmol/L. In Stewarts terms, normal saline has a strong ion difference of 0mmol/L (given how equal the concentrations of sodium and chloride are), and thus adding it to a body fluid will decrease the strong ion difference. The strong ion difference of Hartmanns, on the other hand, is 28mmol/L, and so it has a much gentler acidifying effect. This has been demonstrated experimentally in a cohort of 5 septic patients; and the theory is discussed in detail here . Change in strong ion difference following the infusion of normal saline The above graph is adopted from Lobo et al, who in 2003 infused a series of healthy volunteers with 2000ml of normal saline to study the difference between sodium chloride and Hartmanns solution. Now, enough saline-bashing. If we remain faithful to the interpretation of acid base disorders in terms of the strong ion difference, we will find that any other fluid which has a low string ion difference will produce a similar picture; perhaps not by increasing the chloride (if it contains no chloride) but by forcing the body fluid to equilibrate with a fluid which has an SID of 0mmol/L Continue reading >>

Hyperchloremic Acidosis

Hyperchloremic Acidosis

Author: Sai-Ching Jim Yeung, MD, PhD, FACP; Chief Editor: Romesh Khardori, MD, PhD, FACP more... This article covers the pathophysiology and causes of hyperchloremic metabolic acidoses , in particular the renal tubular acidoses (RTAs). [ 1 , 2 ] It also addresses approaches to the diagnosis and management of these disorders. A low plasma bicarbonate (HCO3-) concentration represents, by definition, metabolic acidosis, which may be primary or secondary to a respiratory alkalosis. Loss of bicarbonate stores through diarrhea or renal tubular wasting leads to a metabolic acidosis state characterized by increased plasma chloride concentration and decreased plasma bicarbonate concentration. Primary metabolic acidoses that occur as a result of a marked increase in endogenous acid production (eg, lactic or keto acids) or progressive accumulation of endogenous acids when excretion is impaired by renal insufficiency are characterized by decreased plasma bicarbonate concentration and increased anion gap without hyperchloremia. The initial differentiation of metabolic acidosis should involve a determination of the anion gap (AG). This is usually defined as AG = (Na+) - [(HCO3- + Cl-)], in which Na+ is plasma sodium concentration, HCO3- is bicarbonate concentration, and Cl- is chloride concentration; all concentrations in this formula are in mmol/L (mM or mEq/L) (see also the Anion Gap calculator). The AG value represents the difference between unmeasured cations and anions, ie, the presence of anions in the plasma that are not routinely measured. An increased AG is associated with renal failure, ketoacidosis, lactic acidosis, and ingestion of certain toxins. It can usually be easily identified by evaluating routine plasma chemistry results and from the clinical picture. A normal AG Continue reading >>

Final Diagnosis -- Hypochloremic Metabolic Alkalosis

Final Diagnosis -- Hypochloremic Metabolic Alkalosis

FINAL DIAGNOSIS HYPOCHLOREMIC METABOLIC ALKALOSIS. I. INTRODUCTION Metabolic alkalosis is an acid-base disorder in which the pH of the blood is elevated beyond the normal range of 7.35-7.45. This metabolic condition occurs mainly due to decreased hydrogen ion concentration in the blood, leading to compensatory increased levels of serum bicarbonate, or alternatively, as a direct result of increased bicarbonate concentrations. An elevated PaCO2 is often present as a result of compensatory alveolar hypoventilation. II. CAUSES OF METABOLIC ALKALOSIS The five main major causes of metabolic alkalosis are. Loss of hydrogen ions - Vomiting or nasogastric suction Primary mineralocorticoid excess Renal Hydrogen Loss - Primary mineralocorticoid excess Loop or thiazide diuretics Posthypercapnic alkalosis Hypercalcemia and the milk-alkali syndrome Shift of hydrogen ions into intracellular space - Hypokalemia. Alkalotic agents - Alkalotic agents in excess, such as bicarbonate or antacids. Contraction alkalosis - Due to loss of water in the extracellular space from diuretic use. Sweat losses in cystic fibrosis Villous adenoma or factitious diarrhea III. PHYSIOLOGY OF BICARBONATE HOMEOSTASIS IN THE BODY Systemic arterial pH is maintained between 7.35 and 7.45 by extracellular and intracellular buffering via respiratory and renal mechanisms [1]. The control of arterial CO2 tension by central nervous system and respiratory system and control of plasma bicarbonate by kidneys stabilize the arterial pH by excretion or retention of acid and alkali. This balance is represented by the Henderson-Hassalbalch equation given by Figure 1. Henderson-Hassalbalch equation. Where HCO3- represents in the plasma bicarbonate concentration and pCO2 is the plasma carbon dioxide tension in the blood. At norm Continue reading >>

Nephron Power: Consult Rounds: Why Does Infusion Of Normal Saline Cause Metabolic Acidosis?

Nephron Power: Consult Rounds: Why Does Infusion Of Normal Saline Cause Metabolic Acidosis?

Consult Rounds: Why does infusion of normal saline cause metabolic acidosis? Why does infusion of normal saline cause metabolic acidosis? This should be an easyanswer but when you review the literature, the literature is all over theplace( literally!!).Collection of responses I received when I asked few expertsin the field: 1. Thebicarbonate ions are diluted bythe isotonic fluid,and acidosis occursas a result. 2. The fall in serum bicarbonate is dueto the expansion of the extracellular fluid volume withlarge IV fluids 3. The "strong ion difference" (SID) helpsexplain this that in order to maintain electroneutrality. Since there is diluting fluid, water must dissociate, providing excess protons which leads to metabolic acidosis. - via the stewart method of acid base 4. Usually 60% of the filtered bicarbonate load isreabsorbed in euvolemia. When extracellular volume is low the proximaltubular absorption is increased, maybe to 80%,due to changes in oncoticpressure and hydrostatic pressure of peri tubular capillaries and glomerulus.This results in increased reabsorption in setting of volume depletion.When extracellular volume is increased then proximal tubular absorptionof bicarbonate is decreased, thus an acidosis. 5. The ph of normal saline is 5.5, won'tthat also lead to dissociation and use of Hco3 and cause an acidic environment Continue reading >>

Acid-base Physiology

Acid-base Physiology

8.4.1 Is this the same as normal anion gap acidosis? In hyperchloraemic acidosis, the anion-gap is normal (in most cases). The anion that replaces the titrated bicarbonate is chloride and because this is accounted for in the anion gap formula, the anion gap is normal. There are TWO problems in the definition of this type of metabolic acidosis which can cause confusion. Consider the following: What is the difference between a "hyperchloraemic acidosis" and a "normal anion gap acidosis"? These terms are used here as though they were synonymous. This is mostly true, but if hyponatraemia is present the plasma [Cl-] may be normal despite the presence of a normal anion gap acidosis. This could be considered a 'relative hyperchloraemia'. However, you should be aware that in some cases of normal anion-gap acidosis, there will not be a hyperchloraemia if there is a significant hyponatraemia. In a disorder that typically causes a high anion gap disorder there may sometimes be a normal anion gap! The anion gap may still be within the reference range in lactic acidosis. Now this can be misleading to you when you are trying to diagnose the disorder. Once you note the presence of an anion gap within the reference range in a patient with a metabolic acidosis you naturally tend to concentrate on looking for a renal or GIT cause. 1. One possibility is the increase in anions may be too low to push the anion gap out of the reference range. In lactic acidosis, the clinical disorder can be severe but the lactate may not be grossly high (eg lactate of 6mmol/l) and the change in the anion gap may still leave it in the reference range. So the causes of high anion gap acidosis should be considered in patients with hyperchloraemic acidosis if the cause of the acidosis is otherwise not apparent. Continue reading >>

Is Correcting Hyperchloremic Acidosis Beneficial?

Is Correcting Hyperchloremic Acidosis Beneficial?

You are here: Home / PULMCrit / Is correcting hyperchloremic acidosis beneficial? Is correcting hyperchloremic acidosis beneficial? An elderly woman presents with renal failure due to severe dehydration from diarrhea. She has a hyperchloremic acidosis from diarrhea with a chloride of 115 mEq/L, bicarbonate of 15 mEq/L, and a normal anion gap. During her volume resuscitation, should isotonic bicarbonate be used to correct her hyperchloremic acidosis? Does correcting her hyperchloremic acidosis actually help her, or does this just make her numbers better? The use of bicarbonate for treatment of metabolic acidosis is controversial. However, this controversy centers primarily around use of bicarbonate for management of lactic acidosis or ketoacidosis.Treatment of these disorders requires reversing the underlying disease process, with bicarbonate offering little if any benefit.Hyperchloremic metabolic acidosis is different.Whether due to bicarbonate loss or volume repletion with normal saline, the primary problems is a bicarbonate deficiency.Treating this with bicarbonate is a logical and accepted approach: Giving bicarbonate to a patient with a true bicarbonate deficit is not controversial. Controversy arises when the decrease in bicarbonate concentration is the result of its conversion to another base, which, given time, can be converted back to bicarbonate However, clinicians are often reluctant to treat hyperchloremic metabolic acidosis with bicarbonate, since the benefits of treatment are unclear.This post will attempt to clarify the rationale for treatment. Resuscitation with balanced crystalloids improves renal function There is growing evidence that resuscitation with normal saline impairs renal blood flow and function ( Young 2014 ).For example, Chowdhury 2012 inve Continue reading >>

Normal Anion Gap Metabolic Acidosis

Normal Anion Gap Metabolic Acidosis

Home | Critical Care Compendium | Normal Anion Gap Metabolic Acidosis Normal Anion Gap Metabolic Acidosis (NAGMA) HCO3 loss and replaced with Cl- -> anion gap normal if hyponatraemia is present the plasma [Cl-] may be normal despite the presence of a normal anion gap acidosis -> this could be considered a ‘relative hyperchloraemia’. Extras – RTA, ingestion of oral acidifying salts, recovery phase of DKA loss of bicarbonate with chloride replacement -> hyperchloraemic acidosis secretions into the large and small bowel are mostly alkaline with a bicarbonate level higher than that in plasma. some typical at risk clinical situations are: external drainage of pancreatic or biliary secretions (eg fistulas) this should be easily established by history normally 85% of filtered bicarbonate is reabsorbed in the proximal tubule and the remaining 15% is reabsorbed in the rest of the tubule in patients receiving acetazolamide (or other carbonic anhydrase inhibitors), proximal reabsorption of bicarbonate is decreased resulting in increased distal delivery and HCO3- appears in urine this results in a hyperchloraemic metabolic acidosis and is essentially a form of proximal renal tubular acidosis but is usually not classified as such. hyperchloraemic metabolic acidosis commonly develops during therapy of diabetic ketoacidosis with normal saline oral administration of CaCl2 or NH4Cl is equivalent to giving an acid load both of these salts are used in acid loading tests for the diagnosis of renal tubular acidosis CaCl2 reacts with bicarbonate in the small bowel resulting in the production of insoluble CaCO3 and H+ the hepatic metabolism of NH4+ to urea results in an equivalent production of H+ REASONS WHY ANION GAP MAY BE NORMAL DESPITE A ‘HIGH ANION GAP METABOLIC ACIDOSIS’ 1. Continue reading >>

How Exactly Does 0.9% Saline Cause Hyperchloremic Metabolic Acidosis? Something To Do With It's Strong Iron Difference But I Can't Quite Grasp It. : Medicalschool

How Exactly Does 0.9% Saline Cause Hyperchloremic Metabolic Acidosis? Something To Do With It's Strong Iron Difference But I Can't Quite Grasp It. : Medicalschool

Please keep all topics germane to current medical students. ALL QUESTIONS GERMANE TO PREMEDICAL STUDENTS(for example how many doctors should I shadow to get into Harvard?) should be directed to the PREMED subreddit. Filesharing is prohibited in this subreddit. This includes discussion of filesharing or sources of pirated materials (e.g. anki decks). This subreddit is not a place to spam your blog or solicit business. Should you wish to submit your own content, please consider buying a sponsored link from reddit. Keep memes to a minimum. We welcome personal submissions and well-written concerns or stories, but please present them in a more intelligent fashion. Troll posts will not be tolerated. Previous examples of troll posts involved users seeking "help" on mundane or sensitive personal issues. These posts often include an immature or sophomoric subtext. As with memes, we ask you to please exercise judgement and present your content in a more mature and intelligent fashion. Moderator discretion is used to determine and remove posts of this nature. Please limit posts concerning USMLE Step 1 or 2 to their respective stickied threads. Posts not following this rule will be deleted. AMA-style threads are not allowed without prior moderator approval. Moderation issues related to the IRC channel should be directed at the mods of the respective channel. The moderators of the /r/MedicalSchool subreddit do not officially sanction/endorse any channel or take responsibility for any happenings within any channel. Posts made by accounts with less than 10 comment karma or less than 3 days old will be automatically removed. This is to prevent spam/trolling. For information on rules regarding recruitment for research studies, please see this page. You may not recruit for your research Continue reading >>

More in ketosis