
Vomiting - Wikipedia
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources . Unsourced material may be challenged and removed. "Vomit" redirects here. For other uses, see Vomit (disambiguation) . "Emesis" redirects here. For the butterfly genus, see Emesis (genus) . "Heaving" redirects here. For the sailing term, see Heaving to . For the sailing term "heaving down", see Careening . "Puke" redirects here. For other uses, see Puke (disambiguation) . Miracle of Marco Spagnolo by Giorgio Bonola ( Quadroni of St. Charles ) Vomiting, also known as emesis, puking and throwing up, among other terms, is the involuntary, forceful expulsion of the contents of one's stomach through the mouth and sometimes the nose . [1] Vomiting can be caused by a wide variety of conditions; it may present as a specific response to ailments like gastritis or poisoning , or as a non-specific sequela of disorders ranging from brain tumors and elevated intracranial pressure to overexposure to ionizing radiation . The feeling that one is about to vomit is called nausea , which often precedes, but does not always lead to, vomiting. Antiemetics are sometimes necessary to suppress nausea and vomiting. In severe cases, where dehydration develops, intravenous fluid may be required. Self-induced vomiting can be a component of an eating disorder, such as bulimia nervosa , and is itself now an eating disorder on its own, purging disorder . [2] Vomiting is different from regurgitation , although the two terms are often used interchangeably. Regurgitation is the return of undigested food back up the esophagus to the mouth , without the force and displeasure associated with vomiting. The causes of vomiting and regurgitation are generally different. Vomitin Continue reading >>

Diabetic Ketoacidosis
Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Acidosis
When your body fluids contain too much acid, it’s known as acidosis. Acidosis occurs when your kidneys and lungs can’t keep your body’s pH in balance. Many of the body’s processes produce acid. Your lungs and kidneys can usually compensate for slight pH imbalances, but problems with these organs can lead to excess acid accumulating in your body. The acidity of your blood is measured by determining its pH. A lower pH means that your blood is more acidic, while a higher pH means that your blood is more basic. The pH of your blood should be around 7.4. According to the American Association for Clinical Chemistry (AACC), acidosis is characterized by a pH of 7.35 or lower. Alkalosis is characterized by a pH level of 7.45 or higher. While seemingly slight, these numerical differences can be serious. Acidosis can lead to numerous health issues, and it can even be life-threatening. There are two types of acidosis, each with various causes. The type of acidosis is categorized as either respiratory acidosis or metabolic acidosis, depending on the primary cause of your acidosis. Respiratory acidosis Respiratory acidosis occurs when too much CO2 builds up in the body. Normally, the lungs remove CO2 while you breathe. However, sometimes your body can’t get rid of enough CO2. This may happen due to: chronic airway conditions, like asthma injury to the chest obesity, which can make breathing difficult sedative misuse deformed chest structure Metabolic acidosis Metabolic acidosis starts in the kidneys instead of the lungs. It occurs when they can’t eliminate enough acid or when they get rid of too much base. There are three major forms of metabolic acidosis: Diabetic acidosis occurs in people with diabetes that’s poorly controlled. If your body lacks enough insulin, keton Continue reading >>

Diabetic Ketoacidosis
Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Ask The Diabetes Team
Question: From Cleveland, Ohio, USA: My son's pump malfunctioned last night in the middle of the night and we don't know exactly how long he was not receiving his insulin. He woke up with a "high" glucose and an episode of vomiting. Being on vacation, we did not have ketostix, but the smell of his breath gave evidence to his high ketones. We immediately bolused him via injection and changed his site. We continued frequent blood sugar checks and started pushing fluids. The vomiting continued for two more episodes and his blood sugar finally started coming down so he stopped vomiting and was able to keep fluids down. We were with extended family, who, of course, had questions. One of the questions was,"Why do high blood sugars and ketones cause vomiting?" I realized that even after dealing with my son's illness for eight years and working as an ICU nurse and treating DKA in patients, I don't know the pathophysiology of this process! My guess is it has something to do with the metabolic changes and the changeover to an acid state in the blood. I really don't know and I can't find the answer anywhere on the net. I appreciate any information and please be as technical as you'd like. Answer: First of all, a big thumbs-up to you for managing this degree of probable DKA in a levelheaded and successful way. But....a big thumbs down for traveling without ketone strips (blood - if you have the correct meter - or urine) or back-up insulin (other than fast acting insulin). I preach that if you have a pump, then there should be some insulin glargine (or other long-acting insulin) available in case of pump malfunction/misbehavior. I presume you travel with your emergency glucagon kit? All these things should be together. Your question, somewhat surprisingly to me, is not uncommon. Why Continue reading >>

Metabolic Acidosis - Endocrine And Metabolic Disorders - Merck Manuals Professional Edition
(Video) Overview of Acid-Base Maps and Compensatory Mechanisms By James L. Lewis, III, MD, Attending Physician, Brookwood Baptist Health and Saint Vincent’s Ascension Health, Birmingham Metabolic acidosis is primary reduction in bicarbonate (HCO3−), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly subnormal. Metabolic acidoses are categorized as high or normal anion gap based on the presence or absence of unmeasured anions in serum. Causes include accumulation of ketones and lactic acid, renal failure, and drug or toxin ingestion (high anion gap) and GI or renal HCO3− loss (normal anion gap). Symptoms and signs in severe cases include nausea and vomiting, lethargy, and hyperpnea. Diagnosis is clinical and with ABG and serum electrolyte measurement. The cause is treated; IV sodium bicarbonate may be indicated when pH is very low. Metabolic acidosis is acid accumulation due to Increased acid production or acid ingestion Acidemia (arterial pH < 7.35) results when acid load overwhelms respiratory compensation. Causes are classified by their effect on the anion gap (see The Anion Gap and see Table: Causes of Metabolic Acidosis ). Lactic acidosis (due to physiologic processes) Lactic acidosis (due to exogenous toxins) Toluene (initially high gap; subsequent excretion of metabolites normalizes gap) HIV nucleoside reverse transcriptase inhibitors Biguanides (rare except with acute kidney injury) Normal anion gap (hyperchloremic acidosis) Renal tubular acidosis, types 1, 2, and 4 The most common causes of a high anion gap metabolic acidosis are Ketoacidosis is a common complication of type 1 diabetes mellitus (see diabetic ketoacidosis ), but it also occurs with chronic alcoholism (see alcoholic ketoacidos Continue reading >>

Diabetic Ketoacidosis
The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Metabolic Acidosis: Causes, Symptoms, And Treatment
The Terrible Effects of Acid Acid corrosion is a well-known fact. Acid rain can peel the paint off of a car. Acidifying ocean water bleaches and destroys coral reefs. Acid can burn a giant hole through metal. It can also burn holes, called cavities, into your teeth. I think I've made my point. Acid, regardless of where it's at, is going to hurt. And when your body is full of acid, then it's going to destroy your fragile, soft, internal organs even more quickly than it can destroy your bony teeth and chunks of thick metal. What Is Metabolic Acidosis? The condition that fills your body with proportionately too much acid is known as metabolic acidosis. Metabolic acidosis refers to a physiological state characterized by an increase in the amount of acid produced or ingested by the body, the decreased renal excretion of acid, or bicarbonate loss from the body. Metabolism is a word that refers to a set of biochemical processes within your body that produce energy and sustain life. If these processes go haywire, due to disease, then they can cause an excess production of hydrogen (H+) ions. These ions are acidic, and therefore the level of acidity in your body increases, leading to acidemia, an abnormally low pH of the blood, <7.35. The pH of the blood mimics the overall physiological state in the body. In short, a metabolic process is like a power plant producing energy. If a nuclear power plant goes haywire for any reason, then we know what the consequences will be: uncontrolled and excessive nuclear energetic reactions leading to the leakage of large amounts of radioactive material out into the environment. In our body, this radioactive material is acid (or hydrogen ions). Acidemia can also occur if the kidneys are sick and they do not excrete enough hydrogen ions out of th Continue reading >>

How Does Diabetic Ketoacidosis Cause Vomiting?
DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body’s cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can’t get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn’t available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body’s metabolic processes aren’t able to function as well. A higher level of ketones also affects levels of sugar and electrolytes in the body. As ketones accumulate in the blood, more ketones will be passed in the urine, taking sodium and potassium salts out with them. Over time, levels of sodium and potassium salts in the body become depleted, which can cause nausea and vomiting. The result is a vicious cycle. The most important prevention strategies are to monitor blood glucose levels routinely, keep blood glucose levels controlled (e.g., Continue reading >>

Diabetic Ketoacidosis
Diabetic acidosis is a life-threatening condition that can occur in people with type 1 diabetes. Less commonly, it can also occur with type 2 diabetes. Term watch Ketones: breakdown products from the use of fat stores for energy. Ketoacidosis: another name for diabetic acidosis. It happens when a lack of insulin leads to: Diabetic acidosis requires immediate hospitalisation for urgent treatment with fluids and intravenous insulin. It can usually be avoided through proper treatment of Type 1 diabetes. However, ketoacidosis can also occur with well-controlled diabetes if you get a severe infection or other serious illness, such as a heart attack or stroke, which can cause vomiting and resistance to the normal dose of injected insulin. What causes diabetic acidosis? The condition is caused by a lack of insulin, most commonly when doses are missed. While insulin's main function is to lower the blood sugar level, it also reduces the burning of body fat. If the insulin level drops significantly, the body will start burning fat uncontrollably while blood sugar levels rise. Glucose will then begin to show up in your urine, along with ketone bodies from fat breakdown that turn the body acidic. The body attempts to reduce the level of acid by increasing the rate and depth of breathing. This blows off carbon dioxide in the breath, which tends to correct the acidosis temporarily (known as acidotic breathing). At the same time, the high secretion of glucose into the urine causes large quantities of water and salts to be lost, putting the body at serious risk of dehydration. Eventually, over-breathing becomes inadequate to control the acidosis. What are the symptoms? Since diabetic acidosis is most often linked with high blood sugar levels, symptoms are the same as those for diabetes Continue reading >>

Diabetic Ketoacidosis
What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

Symptoms And Detection Of Ketoacidosis
* these are more specific for ketoacidosis than hyperosmolar syndrome Everyone with diabetes needs to know how to recognize and treat ketoacidosis. Ketones travel from the blood into the urine and can be detected in the urine with ketone test strips available at any pharmacy. Ketone strips should always be kept on hand, but stored in a dry area and replaced as soon as they become outdated. Measurement of Ketones in the urine is very important for diabetics with infections or on insulin pump therapy due to the fact it gives more information than glucose tests alone. Check the urine for ketones whenever a blood sugar reading is 300 mg/dl or higher, if a fruity odor is detected in the breath, if abdominal pain is present, if nausea or vomiting is occurring, or if you are breathing rapidly and short of breath. If a moderate or large amount of ketones are detected on the test strip, ketoacidosis is present and immediate treatment is required. Symptoms for hyperglycemic hyperosmolar syndrome are linked to dehydration rather than acidosis, so a fruity odor to the breath and stomach upset are less likely. During any illness, especially when it is severe and any time the stomach becomes upset, ketone levels should be determined. Never assume an upset stomach is due to food poisoning or the flu without determining if ketones are the cause. During any prolonged illness, ketones should be tested every 4 hours. After ketones are formed from fat metabolism, they collect in the blood and are excreted into the urine. There are two ways to measure ketones at home: in the blood with a specialized meter, like the Precision Xtra™ , which measures both sugar and ketones in blood. This is the fastest way to tell if ketones are rising, and the best method for parents to use to quickly Continue reading >>

Merck And The Merck Manuals
Acidosis is caused by an overproduction of acid in the blood or an excessive loss of bicarbonate from the blood (metabolic acidosis) or by a buildup of carbon dioxide in the blood that results from poor lung function or depressed breathing (respiratory acidosis). If an increase in acid overwhelms the body's acid-base control systems, the blood will become acidic. As blood pH drops (becomes more acidic), the parts of the brain that regulate breathing are stimulated to produce faster and deeper breathing (respiratory compensation). Breathing faster and deeper increases the amount of carbon dioxide exhaled. The kidneys also try to compensate by excreting more acid in the urine. However, both mechanisms can be overwhelmed if the body continues to produce too much acid, leading to severe acidosis and eventually heart problems and coma. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale. Metabolic acidosis develops when the amount of acid in the body is increased through ingestion of a substance that is, or can be broken down (metabolized) to, an acid—such as wood alcohol (methanol), antifreeze (ethylene glycol), or large doses of aspirin (acetylsalicylic acid). Metabolic acidosis can also occur as a result of abnormal metabolism. The body produces excess acid in the advanced stages of shock and in poorly controlled type 1 diabetes mellitus (diabetic ketoacidosis). Even the production of normal amounts of acid may lead to acidosis when the kidneys are not functioning normally and are therefore not able to excrete sufficient amounts of acid in the urine. Major Causes of Metabolic Acidosis Diabetic ketoacidosis (buildup of ketoacids) Drugs and substances such as acetazolamide, alcohols, and aspirin Lactic acidosis (buildup of lactic acid Continue reading >>

Pediatric Diabetic Ketoacidosis
Practice Essentials Diabetic ketoacidosis, in pediatric and adult cases, is a metabolic derangement caused by the absolute or relative deficiency of the anabolic hormone insulin. Together with the major complication of cerebral edema, it is the most important cause of mortality and severe morbidity in children with diabetes. Signs and symptoms Symptoms of acidosis and dehydration include the following: Symptoms of hyperglycemia, a consequence of insulin deficiency, include the following: Patients with diabetic ketoacidosis may also have the following signs and symptoms: Cerebral edema Most cases of cerebral edema occur 4-12 hours after initiation of treatment. Diagnostic criteria of cerebral edema include the following: Major criteria include the following: Minor criteria include the following: See Clinical Presentation for more detail. Laboratory studies The following lab studies are indicated in patients with diabetic ketoacidosis: Imaging studies Head computed tomography (CT) scanning - If coma is present or develops Chest radiography - If clinically indicated Electrocardiography Electrocardiography (ECG) is a useful adjunct to monitor potassium status. Characteristic changes appear with extremes of potassium status. See the images below. Consciousness Check the patient’s consciousness level hourly for up to 12 hours, especially in a young child with a first presentation of diabetes. The Glasgow coma scale is recommended for this purpose. See Workup for more detail. Management Replacement of the following is essential in the treatment of diabetic ketoacidosis: Insulin - Continuous, low-dose, intravenous (IV) insulin infusion is generally considered the safest and most effective insulin delivery method for diabetic ketoacidosis Potassium - After initial resuscitatio Continue reading >>

A Patient Presenting With Metabolic Acidosis Despite Severe Vomiting--correctdiagnosis By Use Of The Physical-chemical Approach.
1. Am J Emerg Med. 2013 Jun;31(6):995.e1-2. doi: 10.1016/j.ajem.2013.01.022. Epub2013 Mar 7. A patient presenting with metabolic acidosis despite severe vomiting--correctdiagnosis by use of the physical-chemical approach. Lindner G(1), Pfortmller C, Exadaktylos AK. (1)Department of Internal Medicine, Inselspital, University Hospital Bern, Switzerland. [email protected] Erratum in Am J Emerg Med. 2013 Oct;31(10):1535. We describe the case of a 28-year-old otherwise healthy woman who presents to ouremergency department with nausea for 2 days and severe vomiting for 1 day. Shehas no history of travel, and her medical history is unremarkable. The physicalexamination shows a soft and nontender abdomen. Laboratory examinations revealthe presence of significant metabolic alkalosis despite the severe vomiting ofthe patient. Hypochloremic alkalosis would be expected to be present in thispatient. We explain how to correctly identify the rare cause of metabolicacidosis present in this patient using the physicochemical approach (Stewartsapproach) for the analysis of human acid-base disorders. Continue reading >>