diabetestalk.net

How Does Acidosis Cause Abdominal Pain

Recurrent Colic In Horses

Recurrent Colic In Horses

Home Colic, loosely defined as abdominal pain from any cause, is very common in horses. Impaction, overproduction of intestinal gas, infection, hindgut acidosis, twists, and displacement of the colon are frequently found as causes. Most horses that suffer a bout of colic will recover, often without veterinary treatment, and go on for years without a return of the condition. However, a smaller number of horses develop signs of colic again and again, sometimes seemingly related to weather changes or some other factor. Finding and eliminating the cause of these episodes is often difficult and frustrating for owners and caregivers. The veterinary examination of a horse with recurrent colic can involve a number of procedures, usually beginning with obvious things like a check of dental condition, analysis of blood and feces, and rectal palpation. A detailed history of the horse’s exercise program and feeding plan may indicate the need for changes in management. Endoscopic examination of the esophagus and stomach may show the presence of gastric ulcers that are often found in performance horses, with indications of mild colic being one of the typical signs. Abdominal discomfort can be related to organs apart from those in the digestive system, and a more extensive examination can detect problems with the heart, lungs, or liver. Ultrasound can be used to show tumors, enteroliths, sand accumulation, and unusual thickening of the intestinal walls. Exploratory abdominal surgery to find a cause of recurrent colic is not done without some risks to the horse, and this procedure may or may not locate a specific cause that can be treated. Treatment of recurrent colic depends on the factors related to the horse’s discomfort. In cases where no obvious cause is identified, management Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is a condition that occurs when the body produces excessive quantities of acid or when the kidneys are not removing enough acid from the body. If unchecked, metabolic acidosis leads to acidemia, i.e., blood pH is low (less than 7.35) due to increased production of hydrogen ions by the body or the inability of the body to form bicarbonate (HCO3−) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general causes of acidemia. Terminology : Acidosis refers to a process that causes a low pH in blood and tissues. Acidemia refers specifically to a low pH in the blood. In most cases, acidosis occurs first for reasons explained below. Free hydrogen ions then diffuse into the blood, lowering the pH. Arterial blood gas analysis detects acidemia (pH lower than 7.35). When acidemia is present, acidosis is presumed. Signs and symptoms[edit] Symptoms are not specific, and diagnosis can be difficult unless the patient presents with clear indications for arterial blood gas sampling. Symptoms may include chest pain, palpitations, headache, altered mental status such as severe anxiety due to hypoxia, decreased visual acuity, nausea, vomiting, abdominal pain, altered appetite and weight gain, muscle weakness, bone pain, and joint pain. Those in metabolic acidosis may exhibit deep, rapid breathing called Kussmaul respirations which is classically associated with diabetic ketoacidosis. Rapid deep breaths increase the amount of carbon dioxide exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur. Extreme acidemia leads to neurological and cardia Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Metabolic Acidosis: Causes, Symptoms, Diagnosis, Treatment, Prognosis, Prevention

Metabolic Acidosis: Causes, Symptoms, Diagnosis, Treatment, Prognosis, Prevention

Acidosis- A medical condition in which the fluids present in the body start to develop increased amount of acidic content making the body fluids acidic. There are two types of Acidosis- Respiratory Acidosis and Metabolic Acidosis. Respiratory Acidosis occurs as a result of malfunction of lungs. Metabolic Acidosis occurs as a result of malfunction of the kidneys. In this article, we will look into about Metabolic Acidosis. We will look into the causes, diagnosis, and treatment of Metabolic Acidosis. As stated, Metabolic Acidosis is a medical disorder in which the body starts producing excessive amounts of acid and/or the kidneys are not able to remove enough acidic content from the body. If not corrected at the appropriate time, Metabolic Acidosis can lead to a medical condition called acidemia in which pH scale in the blood gets low as a result of the kidneys being unable to form bicarbonates in the body. Causes Of Metabolic Acidosis The amount of acid in the blood can is determined by measuring the pH. A lower value of the pH means that the blood is acidic and a higher value of pH means that rhe blood is basic. Ideal pH value in the blood should be around 7.5. There are many processes in an individual's body which produces acid. Usually, the lungs and the kidneys take care of the excess production of acid; however, if there is a malfunction of these organs it results in Acidosis. As stated, Metabolic Acidosis begins in the kidneys. It develops when the kidneys are not able to discard excessive acid or in cases when they discard too much basic content from the body. Metabolic Acidosis is of three types: Diabetic Acidosis: This occurs in poorly controlled diabetes patients. In this form, there is formation of excess ketones making the blood acidic. Hyperchloremic Acidosi Continue reading >>

Abdominal Pain, Vomiting, And Confusion

Abdominal Pain, Vomiting, And Confusion

In the latest Case Record of the Massachusetts General Hospital, a 54-year-old woman with type 2 diabetes mellitus was admitted to the hospital because of abdominal pain, vomiting, and confusion. Initial laboratory evaluation revealed a serum lactate level of 20.3 mmol per liter and a venous blood pH of 6.62. A diagnosis was made. Metformin is excreted unmetabolized in the urine. Therefore, impaired kidney function may result in the accumulation of metformin in the plasma, causing lactic acidosis. In patients who have toxic effects of metformin, the mechanism of lactic acidosis is multifactorial, including enhanced conversion of glucose to lactate in the small intestine and inhibition of gluconeogenesis by lactate, pyruvate, and alanine. Clinical Pearls Conditions that may cause a very large anion gap acidosis include lactic acidosis, aspirin overdose, methanol or ethylene glycol toxicity, diabetic ketoacidosis, and uremia. Altered mental status, including lethargy, stupor, and even coma, can be a direct consequence of acidosis. Acidemia may lead to increased vasodilatation and warm skin, and may also be associated with a paradoxical hypothermia, which is a known complication of profound acidosis. Cardiovascular consequences of acidosis include cardiac failure and catecholamine release, which may lead to arrhythmia and some degree of respiratory compromise. Acidemia can also cause gastric atony, nausea, vomiting, and abdominal pain. Morning Report Questions Q: What is a nonhypoxic (type B) lactic acidosis? A: Type B lactic acidosis refers to the impaired lactate metabolism that can occur in association with the administration of certain medications (e.g., metformin, salicylate, isoniazid, and zidovudine) or in association with certain cancers (e.g., lymphoma and leukemi Continue reading >>

Systemic Causes Of Abdominal Pain

Systemic Causes Of Abdominal Pain

a Department of Emergency Medicine, Thomas Jefferson University Hospital, 1020 Sansom Street, Thompson Building 239, Philadelphia, PA 19107, USA b Division of Emergency Ultrasonography, Department of Emergency Medicine, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA Abstract A variety of systemic and extra-abdominal diseases can cause symptoms within the abdominal cavity. Systemic and extra-abdominal diseases may include abdominal symptoms caused by several mechanisms. This article discusses the most important and common of these causes, namely the metabolic/endocrine causes, hematologic causes, inflammatory causes, infectious causes, functional causes, and the neurogenic causes. Keywords A variety of systemic and extra-abdominal diseases can cause symptoms within the abdominal cavity (Box 1). This article discusses the most important and common of these diseases. Systemic and extra-abdominal diseases may include abdominal symptoms caused by several mechanisms listed in Table 1. Mechanisms include direct pathologic effects on intra-abdominal organs (eg, gallstone formation in sickle cell disease); conversely, systemic illnesses (eg, congestive heart failure, diabetic ketoacidosis [DKA], or addisonian crisis) may themselves be precipitated by diseases in the abdomen. Some systemic illnesses have a direct (eg, constipation in hypercalcemia) or indirect (eg, nausea and vomiting in diabetic or alcoholic ketoacidosis [AKA]) effect on the functioning of the gastrointestinal (GI) tract. Abdominal symptoms may be caused by disease in contiguous organs outside the abdomen (eg, diaphragmatic irritation from disease of adjacent structures in the lung and mediastinum).1–4 Finally, symptoms may be referred to the abdomen from extra-abdom Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

The Etiology Of Abdominal Pain In Diabetic Acidosis*

The Etiology Of Abdominal Pain In Diabetic Acidosis*

The usual signs, symptoms, and laboratory findings in prediabetic coma are well known. The clinical picture of dehydration associated with malnutrition, polyuria, and odor of acetone on the breath, decreased intraocular tension, and Kussmaul breathing, when found in conjunction with sugar and acetone bodies in the urine make a clinical picture that could hardly be confused with any other condition. Other laboratory findings are a high blood sugar, a low CO2 combining power of the blood plasma, and leukocytosis. The white cell count sometimes rises above 65,0001 per cubic millimeter of blood. This picture is usually clear cut and offers Continue reading >>

Hyperglycaemic Crises And Lactic Acidosis In Diabetes Mellitus

Hyperglycaemic Crises And Lactic Acidosis In Diabetes Mellitus

Hyperglycaemic crises are discussed together followed by a separate section on lactic acidosis. DIABETIC KETOACIDOSIS (DKA) AND HYPERGLYCAEMIC HYPEROSMOLAR STATE (HHS) Definitions DKA has no universally agreed definition. Alberti proposed the working definition of “severe uncontrolled diabetes requiring emergency treatment with insulin and intravenous fluids and with a blood ketone body concentration of >5 mmol/l”.1 Given the limited availability of blood ketone body assays, a more pragmatic definition comprising a metabolic acidosis (pH <7.3), plasma bicarbonate <15 mmol/l, plasma glucose >13.9 mmol/l, and urine ketostix reaction ++ or plasma ketostix ⩾ + may be more workable in clinical practice.2 Classifying the severity of diabetic ketoacidosis is desirable, since it may assist in determining the management and monitoring of the patient. Such a classification is based on the severity of acidosis (table 1). A caveat to this approach is that the presence of an intercurrent illness, that may not necessarily affect the level of acidosis, may markedly affect outcome: a recent study showed that the two most important factors predicting mortality in DKA were severe intercurrent illness and pH <7.0.3 HHS replaces the older terms, “hyperglycaemic hyperosmolar non-ketotic coma” and “hyperglycaemic hyperosmolar non-ketotic state”, because alterations of sensoria may be present without coma, and mild to moderate ketosis is commonly present in this state.4,5 Definitions vary according to the degree of hyperglycaemia and elevation of osmolality required. Table 1 summarises the definition of Kitabchi et al.5 Epidemiology The annual incidence of DKA among subjects with type 1 diabetes is between 1% and 5% in European and American series6–10 and this incidence appear Continue reading >>

Lactic Acidosis And Exercise: What You Need To Know

Lactic Acidosis And Exercise: What You Need To Know

Muscle ache, burning, rapid breathing, nausea, stomach pain: If you've experienced the unpleasant feeling of lactic acidosis, you likely remember it. It's temporary. It happens when too much acid builds up in your bloodstream. The most common reason it happens is intense exercise. Symptoms The symptoms may include a burning feeling in your muscles, cramps, nausea, weakness, and feeling exhausted. It's your body's way to tell you to stop what you're doing The symptoms happen in the moment. The soreness you sometimes feel in your muscles a day or two after an intense workout isn't from lactic acidosis. It's your muscles recovering from the workout you gave them. Intense Exercise. When you exercise, your body uses oxygen to break down glucose for energy. During intense exercise, there may not be enough oxygen available to complete the process, so a substance called lactate is made. Your body can convert this lactate to energy without using oxygen. But this lactate or lactic acid can build up in your bloodstream faster than you can burn it off. The point when lactic acid starts to build up is called the "lactate threshold." Some medical conditions can also bring on lactic acidosis, including: Vitamin B deficiency Shock Some drugs, including metformin, a drug used to treat diabetes, and all nucleoside reverse transcriptase inhibitor (NRTI) drugs used to treat HIV/AIDS can cause lactic acidosis. If you are on any of these medications and have any symptoms of lactic acidosis, get medical help immediately. Preventing Lactic Acidosis Begin any exercise routine gradually. Pace yourself. Don't go from being a couch potato to trying to run a marathon in a week. Start with an aerobic exercise like running or fast walking. You can build up your pace and distance slowly. Increase the Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

Abdominal Pain In Patients With Hyperglycemic Crises.

Abdominal Pain In Patients With Hyperglycemic Crises.

Abstract BACKGROUND: The aim of the study was to evaluate the incidence and prognosis of abdominal pain in patients with diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic state (HHS). Abdominal pain, sometimes mimicking an acute abdomen, is a frequent manifestation in patients with DKA. The prevalence and clinical significance of gastrointestinal symptoms including abdominal pain in HHS have not been prospectively evaluated. MATERIALS AND METHODS: This is a prospectively collected evaluation of 200 consecutive patients with hyperglycemic crises admitted to a large inner-city teaching hospital in Atlanta, GA.We analyzed the admission clinical characteristics, laboratory studies, and hospital course of 189 consecutive episodes of DKA and 11 cases of HHS during a 13-month period starting in October 1995. RESULTS: Abdominal pain occurred in 86 of 189 patients with DKA (46%). In 30 patients, the cause of abdominal pain was considered to be secondary to the precipitating cause of metabolic decompensation. Five of them required surgical intervention including 1 patient with Fournier's necrotizing fasciitis, 1 with cholecystitis, 1 with acute appendicitis, and 2 patients with perineal abscess. The presence of abdominal pain was not related to the severity of hyperglycemia or dehydration; however, a strong association was observed between abdominal pain and metabolic acidosis. In DKA patients with abdominal pain, the mean serum bicarbonate (9 +/- 1 mmol/L) and blood pH (7.12 +/- 0.02) were lower than in patients without pain (15 +/- 1 mmol/L and 7.24 +/- 0.09, respectively, both P <.001). Abdominal pain was present in 86% of patients with serum bicarbonate less than 5 mmol/L, in 66% of patients with levels of 5 to less than 10 mmol/L, in 36% of patients with Continue reading >>

Acidosis: The Kiss Of Death!

Acidosis: The Kiss Of Death!

WHAT CAUSES A CONDITION CALLED "ACIDOSIS"? WHAT IS ACIDOSIS? Acidosis Definition: Acidosis is an increased acidity in the blood and other body tissue. Acidosis is said to occur when arterial pH falls below 7.35. The pH level of our blood affects every cell in our body. Chronic acidosis corrodes body tissue, and if left unchecked, will interrupt all cellular activities and functions. WHAT CAUSES ACIDOSIS? HIGH ACID-FORMING FOODS and DIETS all lead to ACIDOSIS. Living a fast-paced daily lifestyle, such as eating on the run and excessive over stimulation, will lead people to face a constant symptoms of indigestion and growing endangerment of over-acidification (Acidosis) of the body cells, which will interrupt cellular activities and functions. It is a major root of sickness and disease. Having our cells constantly exposed to an acidic environment leads to acidosis and then chronic acidosis and finally various forms of disease such as cancer and many more! Studies have shown that an acidic, anaerobic (which is also the lack of oxygen) body environment encourages the breeding of fungus, mold, bacteria, and viruses. As a result, our inner biological terrain shifts from a healthy oxygenated, alkaline environment to an unhealthy acidic one (acidic pH scale). This forces the body to constantly deplete its cellular energy to neutralize and detoxify these acids before they can act as poisons in and around the cells, ultimately changing the environment of each cell and finally compromising its immune system leaving it vulnerable to the ravages of disease to take a foothold in the body. When our body pH becomes overly acidic, it starts to set up defense mechanisms to keep the damaging acids from entering the vital organs. Modern Day Athletes and Acid-Forming Foods Unfortunately, Mo Continue reading >>

More in ketosis