diabetestalk.net

How Are Ketones Used For Energy

What Are Ketones And Are They Healthy?

What Are Ketones And Are They Healthy?

What Are Ketones and Are They Healthy? If you are up on your health news or follow anyone in the health field, you have likely heard the term ketogenic diet. The goal of the ketogenic diet is to adapt the body to utilize fat as its primary fuel source instead of sugar. The body does this by first converting fat into what are called ketones that the cells can then burn as fuel. It is at this point that I typically get asked, what are ketones? In this article, I am going to clear up any gaps, explain exactly how ketogenisis works, and why it can be so beneficial for the human body. Biological Role of Ketones For our ancestors, eating three meals a day just wasn’t a thing. Instead they would hunt and forage for the foods they could find. When there wasn’t food, they wouldn’t eat. What this means is that sometimes they would go for days at a time with no food. To sustain life during times of scarcity, the body is thought to have developed the ability to utilize fat as an alternative fuel source. In a traditional nutrition course, you would learn that sugar is the body’s primary fuel source while fat is a secondary fuel source. When sugar stores are burned up, the cells then convert to burning fat as an energy source. What we are finding out now is that fat can actually be a healthier and more sustainable source of energy. Our Society Is Full of Sugar Burners Modern day, we have an abundance of food that is available to us at all times. Most of us regularly eat three meals a day with intermittent snacking in between. This kind of frequent eating, along with an overemphasis on carb-rich and sugary foods, causes a reduced ability to burn fat. As these foods damage our bodies on a metabolic level, we actually lose the ability to produce ketones. This type of reliance on Continue reading >>

Ketone Bodies As A Fuel For The Brain During Starvation

Ketone Bodies As A Fuel For The Brain During Starvation

THE STATUS OF OUR KNOWLEDGE OF STARVATION AND BRAIN METABOLISM IN HUMANS WHEN I BEGAN MY RESEARCH This story begins in the early 1960s when the general level of knowledge about whole-body metabolism during human starvation was grossly deficient. This was partly caused by a lack of accurate and specific methods for measuring hormones and fuels in biological fluids, which became available about 1965.11 Rigidly designed protocols for studying human volunteers or obese patients, who underwent semi- or total starvation for prolonged periods of time, were not widely employed, and much of the published data regarding metabolic events during starvation were not readily accessible. To complicate matters further, a great deal of the available data was confusing because much of the supposition regarding mechanisms used by the body to survive prolonged periods of starvation was based upon information that was obtained from nonstandardized and often erroneous procedures for studying metabolism. For example, the rate of urinary nitrogen excretion during starvation was sometimes confounded by the consumption of carbohydrate during the studies. Today, students of biochemistry take for granted the fact that tissues of the human body have a hierarchy of fuel usage. They know that the brain, an organ devoted to using glucose, can switch to use ketone bodies during prolonged starvation (2–3 days), thus sparing glucose for other tissues (i.e. red blood cells must use glucose as a fuel; without mitochondria, they have no choice!). However, this fundamental insight into human metabolism was not recognized in the early 1960s, when my research in this area began. How this simple but fundamental fact that ketone bodies provide critical fuels for the brain was discovered and its implication for Continue reading >>

Introduction To Degradation Of Lipids And Ketone Bodies Metabolism

Introduction To Degradation Of Lipids And Ketone Bodies Metabolism

Content: 1. Introduction to degradation of lipids and ketone bodies metabolism 2. Lipids as source of energy – degradation of TAG in cells, β-oxidation of fatty acids 3. Synthesis and utilisation of ketone bodies _ Triacylglycerol (TAG) contain huge amounts of chemical energy. It is very profitable to store energy in TAG because 1 g of water-free TAG stores 5 times more energy than 1 g of hydrated glycogen. Complete oxidation of 1 g of TAG yields 38 kJ, 1g of saccharides or proteins only 17 kJ. Man that weighs 70 kg has 400 000 kJ in his TAG (that weight approximately 10,5 kg). This reserve of energy makes us able to survive starving in weeks. TAG accumulate predominantly in adipocyte cytoplasm. There are more types of fatty acid oxidation. Individual types can be distinguished by different Greek letters. Greek letter denote atom in the fatty acid chain where reactions take place. β-oxidation is of major importance, it is localised in mitochondrial matrix. ω- and α- oxidation are localised in endoplasmic reticulum. Animal cells cannot convert fatty acids to glucose. Gluconeogenesis requires besides other things (1) energy, (2) carbon residues. Fatty acids are rich source of energy but they are not source of carbon residues (there is however one important exception, i.e. odd-numbered fatty acids). This is because cells are not able to convert AcCoA to neither pyruvate, nor OAA. Both carbons are split away as CO2. PDH is irreversible. Plant cells are capable of conversion of AcCoA to OAA in glyoxylate cycle. _ Lipids as source of energy – degradation of TAG in cells, β-oxidation of fatty acids Lipids are used for energy production, this process take place in 3 phases: 1) Lipid mobilisation – hydrolysis of TAG to FA and glycerol. FA and glycerol are transported Continue reading >>

Ketone Bodies

Ketone Bodies

Overview Structure two types acetoacetate β-hydroxybutyrate β-hydroxybutyrate + NAD+ → acetoacetate + NADH ↑ NADH:NAD+ ratio results in ↑ β-hydroxybutyrate:acetoacetate ratio 1 ketone body = 2 acetyl-CoA Function produced by the liver brain can use ketones if glucose supplies fall >1 week of fasting can provide energy to body in prolonged energy needs prolonged starvation glycogen and gluconeogenic substrates are exhausted can provide energy if citric acid cycle unable to function diabetic ketoacidosis cycle component (oxaloacetate) consumed for gluconeogenesis alcoholism ethanol dehydrogenase consumes NAD+ (converts to NADH) ↑ NADH:NAD+ ratio in liver favors use of oxaloacetate for ketogenesis rather than gluconeogenesis. RBCs cannot use ketones as they lack mitochondria Synthesis occurs in hepatocyte mitochondria liver cannot use ketones as energy lacks β-ketoacyl-CoA transferase (thiophorase) which converts acetoacetate to acetoacetyl under normal conditions acetoacetate = β-hydroxybutyrate HMG CoA synthase is rate limiting enzyme Clinical relevance ketoacidosis pathogenesis ↑ ketone levels caused by poorly controlled type I diabetes mellitus liver ketone production exceeds ketone consumption in periphery possible in type II diabetes mellitus but rare alcoholism chronic hypoglycemia results in ↑ ketone production presentation β-hydroxybutyrate > acetoacetate due to ↑ NADH:NAD+ ratio acetone gives breath a fruity odor polyuria ↑ thirst tests ↓ plasma HCO3 hypokalemia individuals are initially hyperkalemic (lack of insulin + acidosis) because K leaves the cells overall though the total body K is depleted replete K in these patients once the hyperkalemia begins to correct nitroprusside urine test for ketones may not be strongly + does not detect Continue reading >>

Ketones

Ketones

Excess ketones are dangerous for someone with diabetes... Low insulin, combined with relatively normal glucagon and epinephrine levels, causes fat to be released from fat cells, which then turns into ketones. Excess formation of ketones is dangerous and is a medical emergency In a person without diabetes, ketone production is the body’s normal adaptation to starvation. Blood sugar levels never get too high, because the production is regulated by just the right balance of insulin, glucagon and other hormones. However, in an individual with diabetes, dangerous and life-threatening levels of ketones can develop. What are ketones and why do I need to know about them? Ketones and ketoacids are alternative fuels for the body that are made when glucose is in short supply. They are made in the liver from the breakdown of fats. Ketones are formed when there is not enough sugar or glucose to supply the body’s fuel needs. This occurs overnight, and during dieting or fasting. During these periods, insulin levels are low, but glucagon and epinephrine levels are relatively normal. This combination of low insulin, and relatively normal glucagon and epinephrine levels causes fat to be released from the fat cells. The fats travel through the blood circulation to reach the liver where they are processed into ketone units. The ketone units then circulate back into the blood stream and are picked up by the muscle and other tissues to fuel your body’s metabolism. In a person without diabetes, ketone production is the body’s normal adaptation to starvation. Blood sugar levels never get too high, because the production is regulated by just the right balance of insulin, glucagon and other hormones. However, in an individual with diabetes, dangerous and life-threatening levels of ketone Continue reading >>

Lipid Metabolism

Lipid Metabolism

on on Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors ([link]). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids. Lipid metabolism begins in the intestine where ingested triglycerides are broken down into smaller chain fatty acids and subsequently into monoglyceride molecules (see [link]b) by pancreatic lipases, enzymes that break down fats after they are emulsified by bile salts. When food reaches the small intestine in the form of chyme, a digestive hormone called cholecystokinin (CCK) is released by intestinal cells in the intestinal mucosa. CCK stimulates the release of pancreatic lipase from the pancreas and stimulates the contraction of the gallbladder to release stored bile salts into the intestine. CCK also travels to the brain, where it can act as a hunger suppressant. Together, the pancreatic lipases and bile salts break down triglycerides into free fatty acids. These fatty acids can be transported across the intestinal membrane. However, once they cross the membrane, they are recombined to again form triglyceride molecules. Within the intestinal cells, these triglycerides are packaged along with cholesterol molecules in phospholipid vesicles called chylomicrons ([link]). The chylomicrons enable fats and cholesterol to move within the aqueous environment of your lymphatic and circulatory systems. Chylomicrons leave the enterocytes by exocytosis and enter the lymphatic system via lacteals in the villi of the intestine. From the lymphatic system, the chylo Continue reading >>

Ketones The Preferable Energy To Brain

Ketones The Preferable Energy To Brain

Ketones Ketones are organic water soluble compounds, chemically characterised by the presence of carbonyl group in which a carbon atom forms a double bond with an oxygen atom and joins with two other carbons. Increased ketone level (B-hydroxybutyrate) in the blood called ketosis which is nutritional as long as ketone level in the blood is within the normal average which is 0.3-5mmol/l. Ketone bodies They are the three ketones released in the liver as by-products during the process of fat metabolism. It includes beta- hydroxyl butyrate, acetoacetate and acetone. The last one is excreted in the urine while the other two are used for energy. The body usually depends on glucose for energy .In cases of fasting, and starvation there is a decrease in blood glucose levels. That pushes the body to utilize the stored fat and release fatty acids and ketones as an alternative source of energy. This ketone production is mainly for the brain. “Ketone supply the brain with the energy not only to survive but to thrive " Dr.Bruce fife All the body organs can either use glucose or fatty acid as a source of energy except the brain. The brain can only use glucose or ketones to produce the energy it needs .Ketones are the preferable source of energy for the brain as the fatty acids are the preferable source of energy for the heart. Due to the myths of our time, we are encouraged to follow a low- fat diet to keep our heart and brain healthy, but in truth our heart and brain prefer fat sources to function better and become healthier. Ketones are a high-energy fuel that nourishes the brain. Dr.theodore vanltallie MD, Home > Ketones Continue reading >>

The Fat-fueled Brain: Unnatural Or Advantageous?

The Fat-fueled Brain: Unnatural Or Advantageous?

Disclaimer: First things first. Please note that I am in no way endorsing nutritional ketosis as a supplement to, or a replacement for medication. As you’ll see below, data exploring the potential neuroprotective effects of ketosis are still scarce, and we don’t yet know the side effects of a long-term ketogenic diet. This post talks about the SCIENCE behind ketosis, and is not meant in any way as medical advice. The ketogenic diet is a nutritionist’s nightmare. High in saturated fat and VERY low in carbohydrates, “keto” is adopted by a growing population to paradoxically promote weight loss and mental well-being. Drinking coffee with butter? Eating a block of cream cheese? Little to no fruit? To the uninitiated, keto defies all common sense, inviting skeptics to wave it off as an unnatural “bacon-and-steak” fad diet. Yet versions of the ketogenic diet have been used to successfully treat drug-resistant epilepsy in children since the 1920s – potentially even back in the biblical ages. Emerging evidence from animal models and clinical trials suggest keto may be therapeutically used in many other neurological disorders, including head ache, neurodegenerative diseases, sleep disorders, bipolar disorder, autism and brain cancer. With no apparent side effects. Sound too good to be true? I feel ya! Where are these neuroprotective effects coming from? What’s going on in the brain on a ketogenic diet? Ketosis in a nutshell In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). Normally, human bodies are sugar-driven machines: ingested carbohydrates are broken down into glucose, which is mainly transported and used as energy or stored as glycogen in liver and muscle tissue. When deprived of d Continue reading >>

Ketosis Fundamentals

Ketosis Fundamentals

What is ketosis? Ketosis is the physiological state where the concentration of ketone bodies in the blood is higher than normal. This is generally agreed to be at beta-hydroxybutyrate (BHB) concentrations greater than 0.5 mM. How to achieve ketosis? Ketosis occurs either as a result of increased fat oxidation, whilst fasting or following a strict ketosis diet plan (ENDOGENOUS ketosis), or after consuming a ketone supplement (EXOGENOUS ketosis). When in a state of ketosis the body can use ketones to provide a fuel for cellular respiration instead of its usual substrates: carbohydrate, fat or protein. Why does ketosis exist? Normally, the body breaks down carbohydrates, fat, and (sometimes) proteins to provide energy. When carbohydrate is consumed in the diet, some is used immediately to maintain blood glucose levels, and the rest is stored. The hormone that signals to cells to store carbohydrate is insulin. The liver stores carbohydrate as glycogen, this is broken down and released between meals to keep blood glucose levels constant. Muscles also store glycogen, when broken down this provides fuel for exercise. Most cells in the body can switch readily between using carbohydrates and fat as fuel. Fuel used depends on substrate availability, on the energy demands of the cell and other neural and hormonal signals. The brain is different as it is dependent on carbohydrates as a fuel source. This is because fats cannot easily cross the blood-brain barrier. The inability to make use of energy within fat poses a problem during periods where there is limited carbohydrate in the diet. If blood glucose levels fall to low, brain function declines. Relatively little energy is stored as carbohydrate (2,000 kCal) compared to fat (150,000 kCal). The body's store of carbohydrates runs Continue reading >>

Ketone Body Metabolism

Ketone Body Metabolism

Ketone body metabolism includes ketone body synthesis (ketogenesis) and breakdown (ketolysis). When the body goes from the fed to the fasted state the liver switches from an organ of carbohydrate utilization and fatty acid synthesis to one of fatty acid oxidation and ketone body production. This metabolic switch is amplified in uncontrolled diabetes. In these states the fat-derived energy (ketone bodies) generated in the liver enter the blood stream and are used by other organs, such as the brain, heart, kidney cortex and skeletal muscle. Ketone bodies are particularly important for the brain which has no other substantial non-glucose-derived energy source. The two main ketone bodies are acetoacetate (AcAc) and 3-hydroxybutyrate (3HB) also referred to as β-hydroxybutyrate, with acetone the third, and least abundant. Ketone bodies are always present in the blood and their levels increase during fasting and prolonged exercise. After an over-night fast, ketone bodies supply 2–6% of the body's energy requirements, while they supply 30–40% of the energy needs after a 3-day fast. When they build up in the blood they spill over into the urine. The presence of elevated ketone bodies in the blood is termed ketosis and the presence of ketone bodies in the urine is called ketonuria. The body can also rid itself of acetone through the lungs which gives the breath a fruity odour. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones. Ketone bodies The term ‘ketone bodies’ refers to three molecules, acetoacetate (AcAc), 3-hydroxybutyrate (3HB) and acetone (Figure 1). 3HB is formed from the reduction of AcAc i Continue reading >>

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies In human beings and most other mammals, acetyl-CoA formed in the liver during oxidation of fatty acids may enter the citric acid cycle (stage 2 of Fig. 16-7) or it may be converted to the "ketone bodies" acetoacetate, D-β-hydroxybutyrate, and acetone for export to other tissues. (The term "bodies" is a historical artifact; these compounds are soluble in blood and urine.) Acetone, produced in smaller quantities than the other ketone bodies, is exhaled. Acetoacetate and D-β-hydroxybutyrate are transported by the blood to the extrahepatic tissues, where they are oxidized via the citric acid cycle to provide much of the energy required by tissues such as skeletal and heart muscle and the renal cortex. The brain, which normally prefers glucose as a fuel, can adapt to the use of acetoacetate or D-β-hydroxybutyrate under starvation conditions, when glucose is unavailable. A major determinant of the pathway taken by acetyl-CoA in liver mitochondria is the availability of oxaloacetate to initiate entry of acetyl-CoA into the citric acid cycle. Under some circumstances (such as starvation) oxaloacetate is drawn out of the citric acid cycle for use in synthesizing glucose. When the oxaloacetate concentration is very low, little acetyl-CoA enters the cycle, and ketone body formation is favored. The production and export of ketone bodies from the liver to extrahepatic tissues allows continued oxidation of fatty acids in the liver when acetyl-CoA is not being oxidized via the citric acid cycle. Overproduction of ketone bodies can occur in conditions of severe starvation and in uncontrolled diabetes. The first step in formation of acetoacetate in the liver (Fig. 16-16) is the enzymatic condensation of two molecules of acetyl-CoA, catalyzed by thiolase; this is simply Continue reading >>

Best Exogenous Ketone Supplements

Best Exogenous Ketone Supplements

Exogenous ketones are a very new and exciting health food supplement that offers numerous health benefits to those who use them regularly. They’ve only been on the market since 2014, but ketones themselves have been studied extensively throughout the last several decades. Ketones are made in the liver from stored fat cells, providing us with energy in times when the body doesn’t have available glucose or “glycogen” to burn. Examples include when you’re pushing the body hard physically and burn off all your stored sugar energy (glycogen/blood glucose), or during times of famine when food is scarce. Exogenous ketones are exactly the same as ketones as far as the body is concerned. “Exogenous” simply means that the ketones are derived from sources outside the body, whereas ketones manufactured by the liver from fat stores are referred to as “endogenous” ketones. The Human Body Isn’t Meant to Run on Sugar All the Time Ketones are now recognized by science as the preferred energy source for both the brain and heart, while our biological power-source inside the body, the mitochondria, also thrive when fueled by ketone bodies instead of glucose. Mitochondria are the sole driving force behind aging in the body, as they help kill aged and/or malformed cells (eg., cancer), form new healthy cells, and in general help keep the body vital and full of energy. Several studies where exogenous ketones have been administered show boundless improvements in athletic performance, cancer treatment, Alzheimer’s, dementia, inflammatory diseases, and genetic disorders of all kinds. Exogenous ketones aren’t to be compared with the hyped-up raspberry ketones that are so popular for weight loss these days. Raspberry ketones are somewhat similar on a molecular level, but are Continue reading >>

Ketosis, Ketone Bodies, And Ketoacidosis – An Excerpt From Modern Nutritional Diseases, 2nd Edition

Ketosis, Ketone Bodies, And Ketoacidosis – An Excerpt From Modern Nutritional Diseases, 2nd Edition

The following text is excerpted from Lipids (Chapter 8) of Modern Nutritional Diseases, 2nd Edition. Ketone Bodies and Ketosis: Ketones are organic chemicals in which an interior carbon in a molecule forms a double bond with an oxygen molecule. Acetone, a familiar chemical, is the smallest ketone possible. It is composed of three carbons, with the double bond to oxygen on the middle carbon. Biological ketone bodies include acetone, larger ketones, and biochemicals that can become ketones. The most important of the ketone bodies are hydroxybutyrate and acetoacetate, both of which are formed from condensation of two acetyl CoA molecules. Acetone is formed from a nonenzymatic decarboxylation of acetoacetate. Ketone bodies are fuel molecules that can be used for energy by all organs of the body except the liver. The production of ketone bodies is a normal, natural, and important biochemical pathway in animal biochemistry (17, p. 577). Small quantities of ketone bodies are always present in the blood, with the quantity increasing as hours without food increase. During fasting or carbohydrate deprivation, larger amounts of ketone bodies are produced to provide the energy that is normally provided by glucose. Excessive levels of circulating ketone bodies can result in ketosis, a condition in which the quantity of circulating ketone bodies is greater than the quantity the organs and tissues of the body need for energy. People who go on extremely low-carbohydrate diets to lose a large excess of body fat usually go into a mild ketosis that moderates as weight is lost. There is no scientific evidence that a low-carbohydrate diet is capable of producing sufficient ketone bodies to be harmful. Excess ketone bodies are excreted by the kidneys and lungs. Exhaled acetone gives the brea Continue reading >>

What Are Ketone Bodies And Why Are They In The Body?

What Are Ketone Bodies And Why Are They In The Body?

If you eat a calorie-restricted diet for several days, you will increase the breakdown of your fat stores. However, many of your tissues cannot convert these fatty acid products directly into ATP, or cellular energy. In addition, glucose is in limited supply and must be reserved for red blood cells -- which can only use glucose for energy -- and brain tissues, which prefer to use glucose. Therefore, your liver converts many of these fatty acids into ketone bodies, which circulate in the blood and provide a fuel source for your muscles, kidneys and brain. Video of the Day Low fuel levels in your body, such as during an overnight fast or while you are dieting, cause hormones to increase the breakdown of fatty acids from your stored fat tissue. These fatty acids travel to the liver, where enzymes break the fatty acids into ketone bodies. The ketone bodies are released into the bloodstream, where they travel to tissues that have the enzymes to metabolize ketone bodies, such as your muscle, brain, kidney and intestinal cells. The breakdown product of ketone bodies goes through a series of steps to form ATP. Conditions of Ketone Body Utilization Your liver will synthesize more ketone bodies for fuel whenever your blood fatty acid levels are elevated. This will happen in response to situations that promote low blood glucose, such as an overnight fast, prolonged calorie deficit, a high-fat and low-carbohydrate diet, or during prolonged low-intensity exercise. If you eat regular meals and do not typically engage in extremely long exercise sessions, the level of ketone bodies in your blood will be highest after an overnight fast. This level will drop when you eat breakfast and will remain low as long as you eat regular meals with moderate to high carbohydrate content. Ketone Bodi Continue reading >>

Ketone Bodies Metabolism

Ketone Bodies Metabolism

1. Metabolism of ketone bodies Gandham.Rajeev Email:[email protected] 2. • Carbohydrates are essential for the metabolism of fat or FAT is burned under the fire of carbohydrates. • Acetyl CoA formed from fatty acids can enter & get oxidized in TCA cycle only when carbohydrates are available. • During starvation & diabetes mellitus, acetyl CoA takes the alternate route of formation of ketone bodies. 3. • Acetone, acetoacetate & β-hydroxybutyrate (or 3-hydroxybutyrate) are known as ketone bodies • β-hydroxybutyrate does not possess a keto (C=O) group. • Acetone & acetoacetate are true ketone bodies. • Ketone bodies are water-soluble & energy yielding. • Acetone, it cannot be metabolized 4. CH3 – C – CH3 O Acetone CH3 – C – CH2 – COO- O Acetoacetate CH3 – CH – CH2 – COO- OH I β-Hydroxybutyrate 5. • Acetoacetate is the primary ketone body. • β-hydroxybutyrate & acetone are secondary ketone bodies. • Site: • Synthesized exclusively by the liver mitochondria. • The enzymes are located in mitochondrial matrix. • Precursor: • Acetyl CoA, formed by oxidation of fatty acids, pyruvate or some amino acids 6. • Ketone body biosynthesis occurs in 5 steps as follows. 1. Condensation: • Two molecules of acetyl CoA are condensed to form acetoacetyl CoA. • This reaction is catalyzed by thiolase, an enzyme involved in the final step of β- oxidation. 7. • Acetoacetate synthesis is appropriately regarded as the reversal of thiolase reaction of fatty acid oxidation. 2. Production of HMG CoA: • Acetoacetyl CoA combines with another molecule of acetyl CoA to produce β-hydroxy β-methyl glutaryl CoA (HMC CoA). • This reaction is catalyzed by the enzyme HMG CoA synthase. 8. • Mitochondrial HMG CoA is used for ketogenesis. Continue reading >>

More in ketosis