diabetestalk.net

How Are Ketones Produced In The Body?

Ketone Bodies Metabolic Pathway (pw:0000069)

Ketone Bodies Metabolic Pathway (pw:0000069)

Description The ketone bodies metabolic pathway is used to convert acetyl-CoA formed in the liver into "ketone bodies": acetone, and more importantly acetoacetate and 3-hydroxybutyrate, which are transported in the blood to extrahepatic tissues where they are converted to acetyl-CoA and oxidized via the citrate cycle pathway for energy. The brain, which usually uses glucose for energy, can utilize ketone bodies under starvation conditions, when glucose is not available. When acetyl-CoA is not being metaboli...(more) Description: ENCODES a protein that exhibits 3-hydroxybutyrate dehydrogenase activity (ortholog); NAD binding (ortholog); oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor (ortholog); INVOLVED IN epithelial cell differentiation (ortholog); fatty acid beta-oxidation (ortholog); heme metabolic process (ortholog); PARTICIPATES IN butanoate metabolic pathway; ketone bodies metabolic pathway; FOUND IN cytoplasm (ortholog); cytosol (ortholog); extracellular exosome (ortholog); INTERACTS WITH 2,3,7,8-tetrachlorodibenzodioxine; 2,4-dinitrotoluene; 2,6-dinitrotoluene Continue reading >>

Urine Test Types: Ph, Ketones, Proteins, And Cells

Urine Test Types: Ph, Ketones, Proteins, And Cells

Urine as a Diagnostic Tool A long time ago, disgusting as it may be, people used to actually taste and drink urine in order to try and diagnose a patient's disease! I'm not even kidding you. Thankfully, modern-day doctors do not have to resort to such disgusting and even dangerous methods. One of the reasons the doctor barbers of yesteryear used to drink their patient's urine was to see if it had a sweet taste, often indicative of diabetes mellitus. Finding the sweet-tasting glucose in the urine was covered in detail in another lesson, so we'll focus on other important measurements here instead. Interpreting Urine pH One value that can be measured in the urine is known as urine pH. pH is a measure of the acidity or alkalinity of a substance. If the pH is low, then it is acidic. If the pH is high, then it is basic, or alkaline. To remember which is which, I'll give you a little trick that has worked for me. If you grew up watching cartoons, you probably saw some comical ones where cartoonish robbers poured acid on the roof of a bank vault and waited while the acid ate its way downward into the vault, so the robbers could get down there to steal all the cash. If you can recall that acid likes to eat its way downward into things, then you'll remember that acidic substances go down the pH scale. That is to say, their pH numbers are lower than basic substances. Normal urine pH is roughly 4.6-8, with an average of 6. Urine pH can increase, meaning it will become more basic, or alkaline, due to: A urinary tract infection Kidney failure The administration of certain drugs such as sodium bicarbonate Vegetarian diets On the flip side, causes for a decreased, or acidic, urine pH, include: Metabolic or respiratory acidosis Diabetic ketoacidosis, a complication of diabetes mellitus Continue reading >>

Metabolism And Ketosis

Metabolism And Ketosis

Dr. Eades, If the body tends to resort to gluconeogenesis for glucose during a short-term carbohydrate deficit, are those who inconsistently reduce carb intake only messing things up by not effecting full blown ketosis? If the body will still prefer glucose as main energy source unless forced otherwise for at least a few days, is it absolutely necessary to completely transform metabolism for minimal muscle loss? Also, if alcohol is broken down into ketones and acetaldehyde, technically couldn’t you continue to drink during your diet or would the resulting gluconeogenesis inhibition from alcohol lead to blood glucose problems on top of the ketotic metabolism? Would your liver ever just be overwhelmed by all that action? I’m still in high school so hypothetical, of course haha… Sorry, lots of questions but I’m always so curious. Thank you so much for taking the time to inform the public. You’re my hero! P.S. Random question…what’s the difference between beta and gamma hydroxybutyric acids? It’s crazy how simple orientation can be the difference between a ketone and date rape drug…biochem is so cool! P.P.S. You should definitely post the details of that inner mitochondrial membrane transport. I’m curious how much energy expenditure we’re talkin there.. Keep doin your thing! Your Fan, Trey No, I don’t think people are messing up if they don’t get into full-blown ketosis. For short term low-carb dieting, the body turns to glycogen. Gluconeogenesis kicks in fairly quickly, though, and uses dietary protein – assuming there is plenty – before turning to muscle tissue for glucose substrate. And you have the Cori cycle kicking in and all sorts of things to spare muscle, so I wouldn’t worry about it. And you can continue to drink while low-carbing. Continue reading >>

Diabetes With Ketone Bodies In Dogs

Diabetes With Ketone Bodies In Dogs

Studies show that female dogs (particularly non-spayed) are more prone to DKA, as are older canines. Diabetic ketoacidosis is best classified through the presence of ketones that exist in the liver, which are directly correlated to the lack of insulin being produced in the body. This is a very serious complication, requiring immediate veterinary intervention. Although a number of dogs can be affected mildly, the majority are very ill. Some dogs will not recover despite treatment, and concurrent disease has been documented in 70% of canines diagnosed with DKA. Diabetes with ketone bodies is also described in veterinary terms as diabetic ketoacidosis or DKA. It is a severe complication of diabetes mellitus. Excess ketone bodies result in acidosis and electrolyte abnormalities, which can lead to a crisis situation for your dog. If left in an untreated state, this condition can and will be fatal. Some dogs who are suffering from diabetic ketoacidosis may present as systemically well. Others will show severe illness. Symptoms may be seen as listed below: Change in appetite (either increase or decrease) Increased thirst Frequent urination Vomiting Abdominal pain Mental dullness Coughing Fatigue or weakness Weight loss Sometimes sweet smelling breath is evident Slow, deep respiration. There may also be other symptoms present that accompany diseases that can trigger DKA, such as hypothyroidism or Cushing’s disease. While some dogs may live fairly normal lives with this condition before it is diagnosed, most canines who become sick will do so within a week of the start of the illness. There are four influences that can bring on DKA: Fasting Insulin deficiency as a result of unknown and untreated diabetes, or insulin deficiency due to an underlying disease that in turn exacerba Continue reading >>

Benefits Of Fueling Your Body With Ketones

Benefits Of Fueling Your Body With Ketones

Why Ketones are a better fuel source than glucose Where do our bodies get the energy to fuel our activities of daily living? Glucose is the main fuel source of our bodies, but there is another type of fuel that is available to our bodies, ketones. Ketones are a natural by-product of fat metabolism. When the body has run out of glucose to use as fuel it will switch fuel sources and start converting fat into fatty acids and then into ketones. Our bodies were designed to use this duel source of energy based on how we lived in the caveman days. In the summer and spring when food was plentiful, cavemen would eat more food and pack on the extra and store it as fat. Then in the fall and winter when food was scarce, the cavemen would live off that extra stored fat. Nowadays, since food supply is plentiful all year around and there is no physiological need or demand to live off the stored fat, thus we may just keep packing it on, all year around. What are the differences between ketones and glucose as a source of energy? Research suggests that ketones are a better, cleaner source of energy for the body and actually provide more energy than glucose. Unlike glucose, ketones do not depend on insulin to get into the cells for use. Ketones produce less carbon dioxide and free radicals than when the body uses glucose as a fuel source thus are less toxic for our body, making it a cleaner fuel source. Unfortunately, ketones are harder energy source for our bodies to tap into since they require your body to be in either a starvation mode or at least be in a state of very low in carbohydrates. Nowadays, the most common way of getting the body to produce ketones, or be in a state of ketosis, is by being on a very low carb diet i.e. a ketogenic diet. Typically, a ketogenic diet consists of Continue reading >>

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Abstract Ketone bodies are produced by the liver and used peripherally as an energy source when glucose is not readily available. The two main ketone bodies are acetoacetate (AcAc) and 3-beta-hydroxybutyrate (3HB), while acetone is the third, and least abundant, ketone body. Ketones are always present in the blood and their levels increase during fasting and prolonged exercise. They are also found in the blood of neonates and pregnant women. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis (DKA), high levels of ketones are produced in response to low insulin levels and high levels of counterregulatory hormones. In acute DKA, the ketone body ratio (3HB:AcAc) rises from normal (1:1) to as high as 10:1. In response to insulin therapy, 3HB levels commonly decrease long before AcAc levels. The frequently employed nitroprusside test only detects AcAc in blood and urine. This test is inconvenient, does not assess the best indicator of ketone body levels (3HB), provides only a semiquantitative assessment of ketone levels and is associated with false-positive results. Recently, inexpensive quantitative tests of 3HB levels have become available for use with small blood samples (5-25 microl). These tests offer new options for monitoring and treating diabetes and other states characterized by the abnormal metabolism of ketone bodies. Continue reading >>

Ketone Bodies

Ketone Bodies

Introductory discusion of fat metabolism, exercise, and fasting. Fatty acids can be used as the major fuel for tissues such as muscle, but they cannot cross the blood-brain barrier, and thus cannot be used by the central nervous system (CNS). This becomes a major problem during starvation (fasting), particularly for organisms such as ourselves in which CNS metabolism constitute a major portion of the resting basal metabolic rate. These organism must provide glucose to the CNS to provide for metabolic needs, and thus during the initial fasting period must break down substantial amounts of muscle tissue (protein) to provide the amino acid precursors of gluconeogenesis. Obviously the organism could not survive long under such a regime. What is needed is an alternate fuel source based on fat rather than muscle. The so-called ketone bodies serve this function: Note that only two of the ketone bodies are in fact ketones, and that acetone is an "unintentional" breakdown product resulting from the instability of acetoacetate at body temperature. Acetone is not available as fuel to any significant extent, and is thus a waste product. CNS tissues can use ketone bodies any time, the problem is the normally very low concentrations (< 0.3 mM) compared to glucose (about 4 mM). Since the KM's for both are similar, the CNS doesn't begin to use ketone bodies in preference to glucose until their concentration exceed's the concentration of glucose in the serum. The system becomes saturated at about 7 mM. The limiting factor in using ketone bodies then becomes the ability of the liver to synthesis them, which requires the induction of the enzymes required for acetoacetate biosynthesis. Normal glucose concentrations inhibit ketone body synthesis, thus the ketone bodies will only begin to be Continue reading >>

Ketosis & Measuring Ketones

Ketosis & Measuring Ketones

Generally, ketone concentrations are lower in the morning and higher in the evening. Whatever time you pick to measure ketone levels, make sure to keep it consistent. Also, do not measure your ketone levels right after exercise. Ketone levels tend to be lower while your glucose levels higher so you won't get representative numbers. Keep in mind there are daily fluctuations caused by changes in hormone levels. Don't get discouraged! Another aspect that affects the level of ketones is the amount of fat in your diet. Some of you may show higher concentration of ketones after a high-fat meal. Coconut oil contains MCTs that will help you boost ketones. To easily increase your fat intake on a ketogenic diet, try fat bombs - snacks with at least 80% fat content. Ketone levels tend to be higher after extensive aerobic exercise as your body depletes glycogen stores. Exercise may help you get into ketosis faster. ketogenic "fruity" breath is not pleasant for most people. To avoid this, drink a lot of water, mint tea and make sure you eat foods rich in electrolytes. Avoid too many chewing gums and mints, as it may put you out of ketosis; there may be hidden carbs affecting your blood sugar. Increase your electrolyte intake, especially potassium. You are likely going to lose some sodium and potassium when switching to the keto diet. Finally, if you find it hard to lose weight on a ketogenic diet, there may be plenty other reasons than the level of ketone bodies: Not Losing Weight on Low-Carb Ketogenic Diet? Don’t Give Up and Read Further. Continue reading >>

Fatty Acid Oxidation, Ketone Body Production

Fatty Acid Oxidation, Ketone Body Production

Sort Draw a simple diagram linking glycolysis, the TCA cycle, triglyceride breakdown and triglyceride synthesis as seen in the liver. Include some of the major substrates, intermediates, and products such as glycerol, DHAP, fatty acyl CoA, malonyl CoA and acetyl CoA. (be able to do this...) Outline the 4 steps involved in the synthesis of triglycerides from glycerol-3-phosphate and activated fatty acids. 1 fatty acid, linked to Acetyl-CoA, is added to glycerol-3-phosphate via an acyltransferase enzyme. The product here is a glycerol backbone with one R group attached (lysophosphatidic acid). Another fatty acid is added to lysophophatidic acid via a different acyltransferase enzyme, creating a molecule with a glycerol backbone and two fatty acids (phosphatidic acid). The phosphate group remaining on the final carbon of the glycerol backbone is removed by a phosphatase enzyme (making diacylglycerol), in order for... The third and final fatty acid to be added by a third acyltransferase enzyme, creating the end triacylglycerol product. Describe how fatty acids are mobilized from adipose tissue. Triacylglycerols are stored in adipocytes (fat storage cells). When fatty acids are needed by the body for energy, hormones (including epinephrine) are produced and bind to their appropriate receptors. This leads to the adenylate cyclase enzyme catalyzing the production of cAMP from ATP. A cAMP-dependent protein kinase then has the effect of activating hormone-sensitive lipase via phosphorylation. Now, this lipase is able to cleave one fatty acid from the triacylglycerol. Further removal of fatty acids is able to occur through the action of diacylglycerol- and monoacylglycerol-specific enzymes. Outline the pathway for activation and transport of the fatty acids to the mitochondrion f Continue reading >>

Urine Ketones - Meanings And False Positives

Urine Ketones - Meanings And False Positives

Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Urine Ketones article more useful, or one of our other health articles. Description Ketones are produced normally by the liver as part of fatty acid metabolism. In normal states these ketones will be completely metabolised so that very few, if any at all, will appear in the urine. If for any reason the body cannot get enough glucose for energy it will switch to using body fats, resulting in an increase in ketone production making them detectable in the blood and urine. How to test for ketones The urine test for ketones is performed using test strips available on prescription. Strips dedicated to ketone testing in the UK include[1]: GlucoRx KetoRx Sticks 2GK® Ketostix® Mission® Ketone Testing should be performed according to manufacturers' instructions. The sample should be fresh and uncontaminated. Usually the result will be expressed as negative or positive (graded 1 to 4)[2]. Ketonuria is different from ketonaemia (ie presence of ketones in the blood) and often ketonuria does not indicate clinically significant ketonaemia. Depending on the testing strips used, urine testing for ketones either has an excellent sensitivity with a low specificity, or a poor sensitivity with a good specificity. However, this should be viewed in the context of uncertainty of the biochemical level of significant ketosis[3]. Interpretation of results Normally only small amounts of ketones are excreted daily in the urine (3-15 mg). High or increased values may be found in: Poorly controlled diabetes. Starvation: Prolonged vomiting. Rapid weight loss. Frequent strenuous exercise. Poisoning (eg, with isop Continue reading >>

Ketosis

Ketosis

There is a lot of confusion about the term ketosis among medical professionals as well as laypeople. It is important to understand when and why nutritional ketosis occurs, and why it should not be confused with the metabolic disorder we call ketoacidosis. Ketosis is a metabolic state where the liver produces small organic molecules called ketone bodies. Most cells in the body can use ketone bodies as a source of energy. When there is a limited supply of external energy sources, such as during prolonged fasting or carbohydrate restriction, ketone bodies can provide energy for most organs. In this situation, ketosis can be regarded as a reasonable, adaptive physiologic response that is essential for life, enabling us to survive periods of famine. Nutritional ketosis should not be confused with ketoacidosis, a metabolic condition where the blood becomes acidic as a result of the accumulation of ketone bodies. Ketoacidosis can have serious consequences and may need urgent medical treatment. The most common forms are diabetic ketoacidosis and alcoholic ketoacidosis. What Is Ketosis? The human body can be regarded as a biologic machine. Machines need energy to operate. Some use gasoline, others use electricity, and some use other power resources. Glucose is the primary fuel for most cells and organs in the body. To obtain energy, cells must take up glucose from the blood. Once glucose enters the cells, a series of metabolic reactions break it down into carbon dioxide and water, releasing energy in the process. The body has an ability to store excess glucose in the form of glycogen. In this way, energy can be stored for later use. Glycogen consists of long chains of glucose molecules and is primarily found in the liver and skeletal muscle. Liver glycogen stores are used to mai Continue reading >>

Ketone Body Formation

Ketone Body Formation

Ketone body formation occurs as an alternative energy source during times of prolonged stress e.g. starvation. It occurs in the liver from an initial substrate of: long chain fatty acids; the fatty acids undergo beta-oxidation by their normal pathway within mitochondria until acetyl-CoA is produced, or ketogenic amino acids; amino acids such as leucine and lysine, released at times of energy depletion, are interconverted only to acetyl-CoA Then, three molecules of acetyl-CoA are effectively joined together in three enzyme steps sequentially catalyzed by: acetyl CoA acetyltransferase HMG-CoA transferase HMG-CoA lyase Coenzyme A is regenerated and the ketone body acetoacetate is formed. Finally, acetoacetate is reduced to another ketone body, D-3-hydroxybutyrate, in a reaction catalyzed by 3-hydroxybutyrate dehydrogenase. This requires NADH. The oxidate state of the liver is such that the forward reaction is generally favoured; this results in more hydroxybutyrate being formed than acetoacetate. Continue reading >>

Ketone Bodies

Ketone Bodies

Abstract Ketone bodies are water‐soluble equivalents of fatty acids. They can substitute for glucose in peripheral tissues, especially in the brain, when glucose becomes limited in physiological and pathological states. Recent findings demonstrate that they also act as signalling metabolites, thus participating in the organism adaptation to the environment, such as during fasting, calorie restriction or prolonged exercise. Diabetes is the most common pathological cause of elevated blood ketone bodies. Ketone bodies are produced in excess in response to low insulin levels and high levels of counterregulatory hormones, the result being the development of metabolic acidosis that is associated with serious health complications. Yet, ketogenic diets have been used for decades to increase ketone body synthesis for their neuroprotective properties as central signalling metabolites and as main energy‐providing substrate for the brain, in epilepsy and neurodegenerative diseases. Key Concepts Ketone bodies are key energy substrates and signalling molecules Ketone bodies participate in energy homeostasis Diabetic ketoacidosis is the most common pathological cause of elevated blood ketone bodies and is associated with serious health complications Ketone bodies are neuroprotective Ketone bodies offer promising perspectives in clinical therapy for certain metabolic diseases, neurodegenerative diseases and cancers Keywords: ketone bodies; energy homeostasis; starvation; exercise; ketoacidosis; neuroprotection Continue reading >>

Keto Diet Science: How Your Body Burns Fat

Keto Diet Science: How Your Body Burns Fat

By now, you’ve probably heard about the keto diet. You've probably heard that it all but bans carbs and sugars, or that it's been clinically shown to reduce epileptic seizures in kids, or even that it helps people condition their bodies to burn fat. As we detailed in our recent feature on the keto diet, all of those things are true. But as any bodybuilder knows, you don't need to be on the keto diet to burn fat. Heck, you can do it with a focused meal and exercise plan. So we've been wondering: When your body "burns fat" for energy, what's really going on there? How exactly does the keto diet work? And why the hell is it called the "keto" diet, anyway? Play Video Play Loaded: 0% Progress: 0% Remaining Time -0:00 This is a modal window. Foreground --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Opaque Background --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Window --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Default Monospace Serif Proportional Serif Monospace Sans-Serif Proportional Sans-Serif Casual Script Small Caps Defaults Done Well strap some protective boxing headgear over those thinking caps, bros, because we’re about to roundhouse kick you in the brain with some KNOWLEDGE. (For a detailed breakdown of the chemistry at work, be sure to check out our references: this explainer on ketone bodies from the University of Waterloo, and this ketosis explainer from Rose-Hulman Institute of Technology [PDF], plus our feature on the keto diet from the July/August issue of Men's Fitness.) Why does the body go into fat-burning mode? For most pe Continue reading >>

Ketone Ester Effects On Metabolism And Transcription

Ketone Ester Effects On Metabolism And Transcription

Abstract Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value. PRODUCTION OF KETONE BODIES Ketone bodies are formed in the liver from free fatty acids released from adipose tissue. As the blood concentration of free fatty acids increases, concentration of blood ketone bodies is correspondingly increased (1, 2). Ketone bodies serve as a physiological respiratory substrate and are the physiological response to prolonged starvation in man (3, 4), where the blood level of ketones reaches 5–7 mM (5). If the release of free fatty acids from adipose tissue exceeds the capacity of tissue to metabolize them, as occurs during insulin deficiency of type I diabetes or less commonly in the insulin resistance of type II diabetes, severe and potentially fatal diabetic ketoacidosis can occur, where blood ketone body levels can reach 20 mM or higher (2) resulting in a decrease in blood bicarbonate to almost 0 mM and blood pH to 6.9. Diabetic ketoacidosis, which is a Continue reading >>

More in ketosis