diabetestalk.net

How Are Ketones Made In The Body

Best Exogenous Ketone Supplements

Best Exogenous Ketone Supplements

Exogenous ketones are a very new and exciting health food supplement that offers numerous health benefits to those who use them regularly. They’ve only been on the market since 2014, but ketones themselves have been studied extensively throughout the last several decades. Ketones are made in the liver from stored fat cells, providing us with energy in times when the body doesn’t have available glucose or “glycogen” to burn. Examples include when you’re pushing the body hard physically and burn off all your stored sugar energy (glycogen/blood glucose), or during times of famine when food is scarce. Exogenous ketones are exactly the same as ketones as far as the body is concerned. “Exogenous” simply means that the ketones are derived from sources outside the body, whereas ketones manufactured by the liver from fat stores are referred to as “endogenous” ketones. The Human Body Isn’t Meant to Run on Sugar All the Time Ketones are now recognized by science as the preferred energy source for both the brain and heart, while our biological power-source inside the body, the mitochondria, also thrive when fueled by ketone bodies instead of glucose. Mitochondria are the sole driving force behind aging in the body, as they help kill aged and/or malformed cells (eg., cancer), form new healthy cells, and in general help keep the body vital and full of energy. Several studies where exogenous ketones have been administered show boundless improvements in athletic performance, cancer treatment, Alzheimer’s, dementia, inflammatory diseases, and genetic disorders of all kinds. Exogenous ketones aren’t to be compared with the hyped-up raspberry ketones that are so popular for weight loss these days. Raspberry ketones are somewhat similar on a molecular level, but are Continue reading >>

How Does The Body Adapt To Starvation?

How Does The Body Adapt To Starvation?

- [Instructor] In this video, I want to explore the question of how does our body adapt to periods of prolonged starvation. So in order to answer this question, I actually think it's helpful to remind ourselves first of a golden rule of homeostasis inside of our body. So in order to survive, remember that our body must be able to maintain proper blood glucose levels. I'm gonna go ahead and write we must be able to maintain glucose levels in our blood, and this is important even in periods of prolonged starvation, because it turns out that we need to maintain glucose levels above a certain concentration in order to survive, even if that concentration is lower than normal. And this of course brings up the question, well, how does our body maintain blood glucose levels? So let's go ahead and answer this question by starting off small. Let's say we have a mini case of starvation, let's say three or four hours after a meal. Your blood glucose levels begin to drop, and so what does your body do to resolve that? Well, at this point, it has a quick and easy solution. It turns to its glycogen stores in the liver. Remember that our body stores up these strings of glucose inside of our body so that we can easily pump it back into the blood when we're not eating. But unfortunately humans only have enough glycogen stores to last us about a day, so after a day of starvation, our body's pretty much reliant exclusively on the metabolic pathways involved in gluconeogenesis, which if you remember is the pathway by which we produce new or neo glucose. And we produce this glucose from non-carbohydrate precursor molecules. So let's think about what else we have in our body. Remember that our other two major storage fuels are fats, and we usually think about fatty acids containing most of th Continue reading >>

Ketone Body Metabolism

Ketone Body Metabolism

Ketone body metabolism includes ketone body synthesis (ketogenesis) and breakdown (ketolysis). When the body goes from the fed to the fasted state the liver switches from an organ of carbohydrate utilization and fatty acid synthesis to one of fatty acid oxidation and ketone body production. This metabolic switch is amplified in uncontrolled diabetes. In these states the fat-derived energy (ketone bodies) generated in the liver enter the blood stream and are used by other organs, such as the brain, heart, kidney cortex and skeletal muscle. Ketone bodies are particularly important for the brain which has no other substantial non-glucose-derived energy source. The two main ketone bodies are acetoacetate (AcAc) and 3-hydroxybutyrate (3HB) also referred to as β-hydroxybutyrate, with acetone the third, and least abundant. Ketone bodies are always present in the blood and their levels increase during fasting and prolonged exercise. After an over-night fast, ketone bodies supply 2–6% of the body's energy requirements, while they supply 30–40% of the energy needs after a 3-day fast. When they build up in the blood they spill over into the urine. The presence of elevated ketone bodies in the blood is termed ketosis and the presence of ketone bodies in the urine is called ketonuria. The body can also rid itself of acetone through the lungs which gives the breath a fruity odour. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones. Ketone bodies The term ‘ketone bodies’ refers to three molecules, acetoacetate (AcAc), 3-hydroxybutyrate (3HB) and acetone (Figure 1). 3HB is formed from the reduction of AcAc i Continue reading >>

Ketone Bodies As A Fuel For The Brain During Starvation

Ketone Bodies As A Fuel For The Brain During Starvation

THE STATUS OF OUR KNOWLEDGE OF STARVATION AND BRAIN METABOLISM IN HUMANS WHEN I BEGAN MY RESEARCH This story begins in the early 1960s when the general level of knowledge about whole-body metabolism during human starvation was grossly deficient. This was partly caused by a lack of accurate and specific methods for measuring hormones and fuels in biological fluids, which became available about 1965.11 Rigidly designed protocols for studying human volunteers or obese patients, who underwent semi- or total starvation for prolonged periods of time, were not widely employed, and much of the published data regarding metabolic events during starvation were not readily accessible. To complicate matters further, a great deal of the available data was confusing because much of the supposition regarding mechanisms used by the body to survive prolonged periods of starvation was based upon information that was obtained from nonstandardized and often erroneous procedures for studying metabolism. For example, the rate of urinary nitrogen excretion during starvation was sometimes confounded by the consumption of carbohydrate during the studies. Today, students of biochemistry take for granted the fact that tissues of the human body have a hierarchy of fuel usage. They know that the brain, an organ devoted to using glucose, can switch to use ketone bodies during prolonged starvation (2–3 days), thus sparing glucose for other tissues (i.e. red blood cells must use glucose as a fuel; without mitochondria, they have no choice!). However, this fundamental insight into human metabolism was not recognized in the early 1960s, when my research in this area began. How this simple but fundamental fact that ketone bodies provide critical fuels for the brain was discovered and its implication for Continue reading >>

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies In human beings and most other mammals, acetyl-CoA formed in the liver during oxidation of fatty acids may enter the citric acid cycle (stage 2 of Fig. 16-7) or it may be converted to the "ketone bodies" acetoacetate, D-β-hydroxybutyrate, and acetone for export to other tissues. (The term "bodies" is a historical artifact; these compounds are soluble in blood and urine.) Acetone, produced in smaller quantities than the other ketone bodies, is exhaled. Acetoacetate and D-β-hydroxybutyrate are transported by the blood to the extrahepatic tissues, where they are oxidized via the citric acid cycle to provide much of the energy required by tissues such as skeletal and heart muscle and the renal cortex. The brain, which normally prefers glucose as a fuel, can adapt to the use of acetoacetate or D-β-hydroxybutyrate under starvation conditions, when glucose is unavailable. A major determinant of the pathway taken by acetyl-CoA in liver mitochondria is the availability of oxaloacetate to initiate entry of acetyl-CoA into the citric acid cycle. Under some circumstances (such as starvation) oxaloacetate is drawn out of the citric acid cycle for use in synthesizing glucose. When the oxaloacetate concentration is very low, little acetyl-CoA enters the cycle, and ketone body formation is favored. The production and export of ketone bodies from the liver to extrahepatic tissues allows continued oxidation of fatty acids in the liver when acetyl-CoA is not being oxidized via the citric acid cycle. Overproduction of ketone bodies can occur in conditions of severe starvation and in uncontrolled diabetes. The first step in formation of acetoacetate in the liver (Fig. 16-16) is the enzymatic condensation of two molecules of acetyl-CoA, catalyzed by thiolase; this is simply Continue reading >>

Diabetes And Ketones

Diabetes And Ketones

Tweet The presence of high levels of ketones in the bloodstream is a common complication of diabetes, which if left untreated can lead to ketoacidosis. Ketones build up when there is insufficient insulin to help fuel the body’s cells. High levels of ketones are therefore more common in people with type 1 diabetes or people with advanced type 2 diabetes. If you are suffering from high levels of ketones and seeking medical advice, contact your GP or diabetes healthcare team as soon as possible. What are ketones? Ketones are an acid remaining when the body burns its own fat. When the body has insufficient insulin, it cannot get glucose from the blood into the body's cells to use as energy and will instead begin to burn fat. The liver converts fatty acids into ketones which are then released into the bloodstream for use as energy. It is normal to have a low level of ketones as ketones will be produced whenever body fat is burned. In people that are insulin dependent, such as people with type 1 diabetes, however, high levels of ketones in the blood can result from taking too little insulin and this can lead to a particularly dangerous condition known as ketoacidosis. How do I test for ketones? Ketone testing can be carried out at home. The most accurate way of testing for ketones is to use a blood glucose meter which can test for ketones as well as blood glucose levels. You can also test urine for ketone levels, however, the testing of urine means that the level you get is representative of your ketone levels up to a few hours ago. Read about testing for ketones and how to interpret the results Who needs to be aware of ketones? The following people with diabetes should be aware of ketones and the symptoms of ketoacidosis: Anyone dependent on insulin – such as all people Continue reading >>

Introduction To Degradation Of Lipids And Ketone Bodies Metabolism

Introduction To Degradation Of Lipids And Ketone Bodies Metabolism

Content: 1. Introduction to degradation of lipids and ketone bodies metabolism 2. Lipids as source of energy – degradation of TAG in cells, β-oxidation of fatty acids 3. Synthesis and utilisation of ketone bodies _ Triacylglycerol (TAG) contain huge amounts of chemical energy. It is very profitable to store energy in TAG because 1 g of water-free TAG stores 5 times more energy than 1 g of hydrated glycogen. Complete oxidation of 1 g of TAG yields 38 kJ, 1g of saccharides or proteins only 17 kJ. Man that weighs 70 kg has 400 000 kJ in his TAG (that weight approximately 10,5 kg). This reserve of energy makes us able to survive starving in weeks. TAG accumulate predominantly in adipocyte cytoplasm. There are more types of fatty acid oxidation. Individual types can be distinguished by different Greek letters. Greek letter denote atom in the fatty acid chain where reactions take place. β-oxidation is of major importance, it is localised in mitochondrial matrix. ω- and α- oxidation are localised in endoplasmic reticulum. Animal cells cannot convert fatty acids to glucose. Gluconeogenesis requires besides other things (1) energy, (2) carbon residues. Fatty acids are rich source of energy but they are not source of carbon residues (there is however one important exception, i.e. odd-numbered fatty acids). This is because cells are not able to convert AcCoA to neither pyruvate, nor OAA. Both carbons are split away as CO2. PDH is irreversible. Plant cells are capable of conversion of AcCoA to OAA in glyoxylate cycle. _ Lipids as source of energy – degradation of TAG in cells, β-oxidation of fatty acids Lipids are used for energy production, this process take place in 3 phases: 1) Lipid mobilisation – hydrolysis of TAG to FA and glycerol. FA and glycerol are transported Continue reading >>

Ketosis: Metabolic Flexibility In Action

Ketosis: Metabolic Flexibility In Action

Ketosis is an energy state that your body uses to provide an alternative fuel when glucose availability is low. It happens to all humans when fasting or when carbohydrate intake is lowered. The process of creating ketones is a normal metabolic alternative designed to keep us alive if we go without food for long periods of time. Eating a diet low in carb and higher in fat enhances this process without the gnawing hunger of fasting. Let’s talk about why ketones are better than glucose for most cellular fuel needs. Legionella Testing Lab - High Quality Lab Results CDC ELITE & NYSDOH ELAP Certified - Fast Results North America Lab Locations legionellatesting.com Body Fuel Basics Normal body cells metabolize food nutrients and oxygen during cellular “respiration”, a set of metabolic pathways in which ATP (adenosine triphosphate), our main cellular energy source is created. Most of this energy production happens in the mitochondria, tiny cell parts which act as powerhouses or fueling stations. There are two primary types of food-based fuel that our cells can use to produce energy: The first cellular fuel is glucose, which is commonly known as blood sugar. Glucose is a product of the starches and sugars (carbohydrates) and protein in our diet. This fuel system is necessary, but it has a limitation. The human body can only store about 1000-1600 calories of glucose in the form of glycogen in our muscles and liver. The amounts stored depend on how much muscle mass is available. Men will be able to store more because they have a greater muscle mass. Since most people use up about 2000 calories a day just being and doing normal stuff, you can see that if the human body depended on only sugar to fuel itself, and food weren’t available for more than a day, the body would run Continue reading >>

What Are Ketones And Are They Dangerous?

What Are Ketones And Are They Dangerous?

Ketones are acids made when your body begins using fat instead of carbohydrates for energy. This happens when there is not enough insulin to get sugar from the blood into the cells, and the body turns fat into energy. When fat is broken down, ketone bodies are made and can accumulate in the body. This condition is called diabetic ketoacidosis, or DKA, and is often the first sign of diabetes before diagnosis. If blood glucose is within a safe range and someone is trying to lose weight, the presence of small amounts of ketones may be perfectly normal. However, with diabetes it is critical that both ketones and blood glucose are closely monitored even if someone is trying to lose weight. Moderate to large ketones may mean that diabetes is out of control. This can be a sign of a potentially dangerous situation. Ketones alter the chemical balance of the blood. DKA does not usually occur unless there are large urine ketones or high blood ketones. If left undiagnosed or untreated, they can poison the body. This requires immediate medical attention. Do not exercise when ketones are high; it may actually increase ketones. Some of the causes of DKA are: Illness Forgetting to take one or more insulin shots Not enough insulin An insulin pump that is not delivering. This is usually due to kinked, obstructed or dislodged infusion catheter. This may result in DKA in as little as three hours. Giving “spoiled” insulin. Insulin that got too hot (over 90º F) or froze. Symptoms of ketoacidosis include those for high blood glucose plus: “Fruity” smelling breath Nausea Vomiting Stomach cramps Confusion Unconsciousness Shortness of breath Unusual thirst Illness can cause blood glucose levels to rise and lead to ketoacidosis. In order to prevent this from happening, there are importan Continue reading >>

Ketone Bodies

Ketone Bodies

Ketone bodies Acetone Acetoacetic acid (R)-beta-Hydroxybutyric acid Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) that are produced by the liver from fatty acids[1] during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise,[2], alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy.[3] In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids. Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids).[1] They are therefore always released into the blood by the liver together with newly produced glucose, after the liver glycogen stores have been depleted (these glycogen stores are depleted after only 24 hours of fasting)[1]. When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted Continue reading >>

What Are Ketones And Are They Healthy?

What Are Ketones And Are They Healthy?

What Are Ketones and Are They Healthy? If you are up on your health news or follow anyone in the health field, you have likely heard the term ketogenic diet. The goal of the ketogenic diet is to adapt the body to utilize fat as its primary fuel source instead of sugar. The body does this by first converting fat into what are called ketones that the cells can then burn as fuel. It is at this point that I typically get asked, what are ketones? In this article, I am going to clear up any gaps, explain exactly how ketogenisis works, and why it can be so beneficial for the human body. Biological Role of Ketones For our ancestors, eating three meals a day just wasn’t a thing. Instead they would hunt and forage for the foods they could find. When there wasn’t food, they wouldn’t eat. What this means is that sometimes they would go for days at a time with no food. To sustain life during times of scarcity, the body is thought to have developed the ability to utilize fat as an alternative fuel source. In a traditional nutrition course, you would learn that sugar is the body’s primary fuel source while fat is a secondary fuel source. When sugar stores are burned up, the cells then convert to burning fat as an energy source. What we are finding out now is that fat can actually be a healthier and more sustainable source of energy. Our Society Is Full of Sugar Burners Modern day, we have an abundance of food that is available to us at all times. Most of us regularly eat three meals a day with intermittent snacking in between. This kind of frequent eating, along with an overemphasis on carb-rich and sugary foods, causes a reduced ability to burn fat. As these foods damage our bodies on a metabolic level, we actually lose the ability to produce ketones. This type of reliance on Continue reading >>

The Different Types Of Ketone Supplements

The Different Types Of Ketone Supplements

Within the last few years, ketone supplements have become a popular way to support those following a ketogenic diet and striving to maintain a healthy level of ketosis as much as possible. However, a lot of people still don’t really know about the different types of ketone supplements out there and how they can be beneficial for when you go keto. Understanding ketone supplementation is important because you want to make sure you’re getting the most bang for your buck and avoiding any products that don’t do what they claim. Before describing specific ketone supplements, it will help us to refresh on what are exogenous ketones, and why we should take them. This way, we can better understand the role of these ketone bodies for our own health and weight loss goals. What Are Exogenous Ketone Supplements? Ketone supplements are often referred to as exogenous ketones, meaning they are created externally—outside of the body. This is opposed to the ketones your body produces when carbs are restricted and you’re in a state of ketosis. Basically, exogenous ketones are created in a lab and made into supplement form for you to ingest. There are three ketones the body produces when on a ketogenic diet: acetoacetate, beta-hydroxybutyrate (BHB), and acetone. The ketone found in exogenous ketone supplements is BHB. That’s because the body can use it most efficiently. Now let’s take a look at why exogenous ketones are important and beneficial to a keto diet. Benefits of Exogenous Ketone Supplements There will be times when maintaining a steady ketogenic state isn’t realistic 24/7, so the purpose of ketone supplements is to provide the body with extra ketones to use when you aren’t currently in ketosis. Ketone supplements can be a huge help when transitioning into a stat Continue reading >>

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Abstract Ketone bodies are produced by the liver and used peripherally as an energy source when glucose is not readily available. The two main ketone bodies are acetoacetate (AcAc) and 3-beta-hydroxybutyrate (3HB), while acetone is the third, and least abundant, ketone body. Ketones are always present in the blood and their levels increase during fasting and prolonged exercise. They are also found in the blood of neonates and pregnant women. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis (DKA), high levels of ketones are produced in response to low insulin levels and high levels of counterregulatory hormones. In acute DKA, the ketone body ratio (3HB:AcAc) rises from normal (1:1) to as high as 10:1. In response to insulin therapy, 3HB levels commonly decrease long before AcAc levels. The frequently employed nitroprusside test only detects AcAc in blood and urine. This test is inconvenient, does not assess the best indicator of ketone body levels (3HB), provides only a semiquantitative assessment of ketone levels and is associated with false-positive results. Recently, inexpensive quantitative tests of 3HB levels have become available for use with small blood samples (5-25 microl). These tests offer new options for monitoring and treating diabetes and other states characterized by the abnormal metabolism of ketone bodies. Continue reading >>

Ketones

Ketones

Ketones are a beneficial product of fat metabolism in the body. When carbohydrate intake is restricted, it lowers blood sugar and insulin levels. As insulin levels fall and energy is needed, fatty acids flow from the fat cells into the bloodstream and are taken up by various cells and metabolized in a process called beta-oxidation. The end result of beta-oxidation is a molecule called acetyl-coA, and as more fatty acids are released and metabolized, acetyl-coA levels in the cells rise. This causes a sort of metabolic “feedback loop” which triggers liver cells to shunt excess acetyl-Coa into ketogenesis, or the making of ketone bodies. Once created, the liver dumps the ketone bodies into the blood stream and they are taken up by skeletal and heart muscle cells at rates of availability. In addition, the brain begins to use ketones as an alternate fuel when blood levels are high enough to cross the blood brain barrier. Testing Laboratory Microbiology - Air Quality - Mold Asbestos - Environmental - Lead emsl.com There are three major types of ketone bodies present in the human blood stream when the metabolic process of ketosis is dominant: Acetoacetate (AcAc) is created first β-hydroxybutyrate (BHB) is created from acetoacetate Acetone is a spontaneously created side product of acetoacetate In times of starvation, or a low carbohydrate intake resulting in low insulin levels, ketone bodies supply up to 50% of the energy requirements for most body tissues, and up to 70% of the energy required by the brain. Glucose is the main source of fuel for neurons when the diet is high in carbohydrates. But when carbs are restricted, ketogenesis becomes the primary fuel process for most cells. During fasting or low carbohydrate intake, levels of ketone bodies in the blood stream can Continue reading >>

Ketone Bodies

Ketone Bodies

Overview Structure two types acetoacetate β-hydroxybutyrate β-hydroxybutyrate + NAD+ → acetoacetate + NADH ↑ NADH:NAD+ ratio results in ↑ β-hydroxybutyrate:acetoacetate ratio 1 ketone body = 2 acetyl-CoA Function produced by the liver brain can use ketones if glucose supplies fall >1 week of fasting can provide energy to body in prolonged energy needs prolonged starvation glycogen and gluconeogenic substrates are exhausted can provide energy if citric acid cycle unable to function diabetic ketoacidosis cycle component (oxaloacetate) consumed for gluconeogenesis alcoholism ethanol dehydrogenase consumes NAD+ (converts to NADH) ↑ NADH:NAD+ ratio in liver favors use of oxaloacetate for ketogenesis rather than gluconeogenesis. RBCs cannot use ketones as they lack mitochondria Synthesis occurs in hepatocyte mitochondria liver cannot use ketones as energy lacks β-ketoacyl-CoA transferase (thiophorase) which converts acetoacetate to acetoacetyl under normal conditions acetoacetate = β-hydroxybutyrate HMG CoA synthase is rate limiting enzyme Clinical relevance ketoacidosis pathogenesis ↑ ketone levels caused by poorly controlled type I diabetes mellitus liver ketone production exceeds ketone consumption in periphery possible in type II diabetes mellitus but rare alcoholism chronic hypoglycemia results in ↑ ketone production presentation β-hydroxybutyrate > acetoacetate due to ↑ NADH:NAD+ ratio acetone gives breath a fruity odor polyuria ↑ thirst tests ↓ plasma HCO3 hypokalemia individuals are initially hyperkalemic (lack of insulin + acidosis) because K leaves the cells overall though the total body K is depleted replete K in these patients once the hyperkalemia begins to correct nitroprusside urine test for ketones may not be strongly + does not detect Continue reading >>

More in ketosis