diabetestalk.net

How Are Ketones Formed Chemistry

The Addition Of Ketones To Schiff Bases

The Addition Of Ketones To Schiff Bases

Note: In lieu of an abstract, this is the article's first page. Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder. Continue reading >>

Aldehydes And Ketones

Aldehydes And Ketones

We'll get right to the point: we're asking you to help support Khan Academy. We're a nonprofit that relies on support from people like you. If everyone reading this gives $10 monthly, Khan Academy can continue to thrive for years. Please help keep Khan Academy free, for anyone, anywhere forever. Continue reading >>

What Are Ketones?

What Are Ketones?

With the gradual resurgence of low-carb diets in recent years, the word “ketones” is thrown around a lot. But many people aren’t really aware of the details. What are ketones, really? And what do they do in the body? There can be a lot of misinformation regarding the answers to these questions, so read on for a full overview of ketones and their role in a ketogenic diet. Ketones, also known as “ketone bodies,” are byproducts of the body breaking down fat for energy that occurs when carbohydrate intake is low. Here’s how it works: When there isn’t a sufficient level of available glucose — which is what the body uses for its main source of fuel — and glycogen levels are depleted, blood sugar and insulin are lowered and the body looks for an alternative source of fuel: in this case, fat. This process can happen when a person fasting, after prolonged exercise, during starvation, or when eating a low-carb, ketogenic diet. And when the body begins breaking down fats for energy like this, a process known as beta-oxidation, ketones are formed for use as fuel for the body and brain. This is known as ketosis. People following a ketogenic diet specifically reduce their carbohydrate intake for this reason: to create ketones for energy. Many people use the benefits of ketosis — less reliance on carbs and more burning of fat — to possibly help lower blood pressure, reduce cravings, improve cholesterol, increase weight loss, improve energy, and more. TYPES OF KETONE BODIES So, what else about ketones do we need to know? To start, there are technically three types of ketone bodies: Acetoacetate (AcAc) Beta-hydroxybutyric acid (BHB) Acetone Both acetoacetate and beta-hydroxybutyrate are responsible for transporting energy from the liver to other tissues in the body Continue reading >>

Aldehydes And Ketones Formation: Copper-catalyzed Aerobic Oxidative Decarboxylation Of Phenylacetic Acids And Α-hydroxyphenylacetic Acids

Aldehydes And Ketones Formation: Copper-catalyzed Aerobic Oxidative Decarboxylation Of Phenylacetic Acids And Α-hydroxyphenylacetic Acids

Abstract Aromatic aldehydes or ketones from copper catalyzed aerobic oxidative decarboxylation of phenylacetic acids and α-hydroxyphenylacetic acids have been synthesized. This reaction combined decarboxylation, dioxygen activation, and C–H bond oxidation steps in a one-pot protocol with molecular oxygen as the sole terminal oxidant. This reaction represents a novel decarboxylation of an sp3-hybridized carbon and the use of a benzylic carboxylic acid as a source of carbonyl compounds. Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder. Continue reading >>

Formation Of Hydrates

Formation Of Hydrates

Voiceover: Here's an example of a nucleophilic addition reaction to an aldehyde or a ketone. So over here on the left, it could be an aldehyde, or we could change that to form a ketone. And if you add water to an aldehyde or ketone, you form this product over here on the right, which is called a hydrate, or also called a gem-diol, or geminal diol because these two OHs here are on the same carbon, so like they're twins. And this reaction is at equilibrium. So let's think about the aldehyde, or the ketone. We know the carbonyl on the aldehyde or ketone is polarized, so we know that the oxygen has more electronegatives than carbons, so it withdraws some electron densities. So this oxygen here is partially negative, and this carbonyl carbon is partially positive, like that. And therefore the carbonyl carbon, since it's partially positive, is electrophillic, so it wants electrons. And it can get electrons from water. So let's go ahead and draw the water molecule right here. Water can function as a nucleophile. It has two lone pairs of electrons, this oxygen here is partially negative, and so we're going to get a nucleophile attacking our electrophile. So a lone pair of electrons on the oxygen is going to attack our carbonyl carbon like that, So the nucleophile attacks the electrophillic portion of the molecule, and these pi electrons here kick off onto the oxygen. So let's go ahead and draw the results of our nucleophilic attack here, and so we now have our oxygen bonded to this carbon, and this oxygen still has two hydrogens bonded to it, so I'm gonna go ahead and draw in those two hydrogens. There's still a lone pair of electrons on that oxygen, which gives that oxygen a +1 formal charge. And then this carbon here is bonded to another oxygen, which had two lone pairs of el Continue reading >>

1. Nomenclature Of Aldehydes And Ketones

1. Nomenclature Of Aldehydes And Ketones

Aldehydes and ketones are organic compounds which incorporate a carbonyl functional group, C=O. The carbon atom of this group has two remaining bonds that may be occupied by hydrogen or alkyl or aryl substituents. If at least one of these substituents is hydrogen, the compound is an aldehyde. If neither is hydrogen, the compound is a ketone. The IUPAC system of nomenclature assigns a characteristic suffix to these classes, al to aldehydes and one to ketones. For example, H2C=O is methanal, more commonly called formaldehyde. Since an aldehyde carbonyl group must always lie at the end of a carbon chain, it is by default position #1, and therefore defines the numbering direction. A ketone carbonyl function may be located anywhere within a chain or ring, and its position is given by a locator number. Chain numbering normally starts from the end nearest the carbonyl group. In cyclic ketones the carbonyl group is assigned position #1, and this number is not cited in the name, unless more than one carbonyl group is present. If you are uncertain about the IUPAC rules for nomenclature you should review them now. Examples of IUPAC names are provided (in blue) in the following diagram. Common names are in red, and derived names in black. In common names carbon atoms near the carbonyl group are often designated by Greek letters. The atom adjacent to the function is alpha, the next removed is beta and so on. Since ketones have two sets of neighboring atoms, one set is labeled α, β etc., and the other α', β' etc. Very simple ketones, such as propanone and phenylethanone (first two examples in the right column), do not require a locator number, since there is only one possible site for a ketone carbonyl function. Likewise, locator numbers are omitted for the simple dialdehyde at t Continue reading >>

Preparation Of Ketones Using Various Methods

Preparation Of Ketones Using Various Methods

Preparation of ketones: Ketones are the organic compound containing carbonyl groups (C=O). The general formula for a ketone is R(C=O)R’, where R and R’ can be alkyl or aryl groups. They are classified into two categories by their substituents: symmetrical ketones (when two identical groups are attached to the carbonyl group) and asymmetrical ketones (when two different groups are appended to the carbonyl group). Many methods exist for the preparation of ketones at industrial scale and in laboratories. Standard methods include oxidation of alcohol, hydrocarbons, etc. Some general methods for the preparation of ketones are explained below: Preparation of ketones from acyl chlorides: Acyl chlorides upon treatment with Grignard reagent and a metal halide, yields ketones. For example: when cadmium chloride is reacted with the Grignard reagent, dialkyl cadmium is formed. Dialkylcadmium thus formed is further reacted with acyl chlorides to form ketones. Preparation of ketones from nitriles: Treatment of nitriles with Grignard reagent upon further hydrolysis yields ketones. Preparation of ketones from benzenes or substituted benzenes: Electrophilic aromatic substitution of a benzene ring with acid chlorides in the presence of a Lewis acid such as AlCl3 results in the formation of ketones. This reaction is popularly known as Friedel Craft’s acylation reaction. Preparation of ketones by dehydrogenation of alcohols: Dehydrogenation of alcohol is a reaction in which two hydrogen molecules are removed from an alcohol molecule upon oxidation. During oxidation of alcohol both C-O and O-H bonds are broken for the formation of C=O bonds. Secondary alcohols in the presence of strong oxidizing agents undergo dehydrogenation to produce ketones. For example: when vapours of secondary Continue reading >>

Synthesis Of Ketones

Synthesis Of Ketones

Like aldehydes, ketones can be prepared in a number of ways. The following sections detail some of the more common preparation methods: the oxidation of secondary alcohols, the hydration of alkynes, the ozonolysis of alkenes, Friedel‐Crafts acylation, the use of lithium dialkylcuprates, and the use of a Grignard reagent. The oxidation of secondary alcohols to ketones may be carried out using strong oxidizing agents, because further oxidation of a ketone occurs with great difficulty. Normal oxidizing agents include potassium dichromate (K 2Cr 2O 7) and chromic acid (H 2CrO 4). The conversion of 2‐propanol to 2‐propanone illustrates the oxidation of a secondary alcohol. The addition of water to an alkyne leads to the formation of an unstable vinyl alcohol. These unstable materials undergo keto‐enol tautomerization to form ketones. The hydration of propyne forms 2‐propanone, as the following figure illustrates. When one or both alkene carbons contain two alkyl groups, ozonolysis generates one or two ketones. The ozonolysis of 1,2‐dimethyl propene produces both 2‐propanone (a ketone) and ethanal (an aldehyde). Friedel‐Crafts acylations are used to prepare aromatic ketones. The preparation of acetophenone from benzene and acetyl chloride is a typical Friedel‐Crafts acylation. The addition of a lithium dialkylcuprate (Gilman reagent) to an acyl chloride at low temperatures produces a ketone. This method produces a good yield of acetophenone. Hydrolysis of the salt formed by reacting a Grignard reagent with a nitrile produces good ketone yields. For example, you can prepare acetone by reacting the Grignard reagent methyl magnesium bromide (CH 3MgBr) with methyl nitrile (CH 3C&tbond;N). Continue reading >>

Aldehydes, Ketones, Carboxylic Acids, And Esters

Aldehydes, Ketones, Carboxylic Acids, And Esters

By the end of this section, you will be able to: Describe the structure and properties of aldehydes, ketones, carboxylic acids and esters Another class of organic molecules contains a carbon atom connected to an oxygen atom by a double bond, commonly called a carbonyl group. The trigonal planar carbon in the carbonyl group can attach to two other substituents leading to several subfamilies (aldehydes, ketones, carboxylic acids and esters) described in this section. Aldehydes and Ketones Both aldehydes and ketones contain a carbonyl group, a functional group with a carbon-oxygen double bond. The names for aldehyde and ketone compounds are derived using similar nomenclature rules as for alkanes and alcohols, and include the class-identifying suffixes –al and –one, respectively: In an aldehyde, the carbonyl group is bonded to at least one hydrogen atom. In a ketone, the carbonyl group is bonded to two carbon atoms: In both aldehydes and ketones, the geometry around the carbon atom in the carbonyl group is trigonal planar; the carbon atom exhibits sp2 hybridization. Two of the sp2 orbitals on the carbon atom in the carbonyl group are used to form σ bonds to the other carbon or hydrogen atoms in a molecule. The remaining sp2 hybrid orbital forms a σ bond to the oxygen atom. The unhybridized p orbital on the carbon atom in the carbonyl group overlaps a p orbital on the oxygen atom to form the π bond in the double bond. Like the C=O bond in carbon dioxide, the C=O bond of a carbonyl group is polar (recall that oxygen is significantly more electronegative than carbon, and the shared electrons are pulled toward the oxygen atom and away from the carbon atom). Many of the reactions of aldehydes and ketones start with the reaction between a Lewis base and the carbon atom at Continue reading >>

Ketone

Ketone

Ketone, any of a class of organic compounds characterized by the presence of a carbonyl group in which the carbon atom is covalently bonded to an oxygen atom. The remaining two bonds are to other carbon atoms or hydrocarbon radicals (R): Ketone compounds have important physiological properties. They are found in several sugars and in compounds for medicinal use, including natural and synthetic steroid hormones. Molecules of the anti-inflammatory agent cortisone contain three ketone groups. Only a small number of ketones are manufactured on a large scale in industry. They can be synthesized by a wide variety of methods, and because of their ease of preparation, relative stability, and high reactivity, they are nearly ideal chemical intermediates. Many complex organic compounds are synthesized using ketones as building blocks. They are most widely used as solvents, especially in industries manufacturing explosives, lacquers, paints, and textiles. Ketones are also used in tanning, as preservatives, and in hydraulic fluids. The most important ketone is acetone (CH3COCH3), a liquid with a sweetish odour. Acetone is one of the few organic compounds that is infinitely soluble in water (i.e., soluble in all proportions); it also dissolves many organic compounds. For this reason—and because of its low boiling point (56 °C [132.8 °F]), which makes it easy to remove by evaporation when no longer wanted—it is one of the most important industrial solvents, being used in such products as paints, varnishes, resins, coatings, and nail-polish removers. The International Union of Pure and Applied Chemistry (IUPAC) name of a ketone is derived by selecting as the parent the longest chain of carbon atoms that contains the carbonyl group. The parent chain is numbered from the end that Continue reading >>

Reaction Friday: Formation Of Acetals From Ketones

Reaction Friday: Formation Of Acetals From Ketones

Today’s video is about the formation of acetals from aldehydes and ketones, an important method for the protection of the carbonyl group. One thing I forgot to mention in the video is that the reaction is an equilibrium – choosing alcohol as the solvent ensures that the equilibrium will be driven towards formation of the acetal, whereas treatment of acetals in aqueous acid leads to re-formation of the carbonyl group. Organic Chemistry 2 builds on the concepts from Org 1 and introduces a lot of new reactions. Here is an index of posts for relevant topics in Organic Chemistry 2: [Hint – searching for something specific? Try CNTRL-F] General Posts About Organic Chemistry 2 Oxidation And Reduction Alcohols, Ethers, And Epoxides Conjugation, Dienes and Pericyclic Reactions Aromaticity and Aromatic Reactions Aldehydes and Ketones Carboxylic Acid Derivatives General Posts Concerning Organic Chemistry 2 Oxidation And Reduction Alcohols, Epoxides, And Ethers Alcohols (1) Nomenclature And Properties How To Make Alcohols More Reactive Alcohols (3) Acidity And Basicity The Williamson Ether Synthesis Williamson Ether Synthesis: Planning Synthesis of Ethers (2) – Back To The Future! Ether Synthesis Via Alcohol And Acid Cleavage Of Ethers With Acid Epoxides – The Outlier Of The Ether Family Opening Of Epoxides With Acid Opening Of Epoxides With Base Making Alkyl Halides From Alcohols Tosylates And Mesylates PBr3 And SOCl2 Elimination Reactions Of Alcohols Elimination Of Alcohols To Alkenes With POCl3 Alcohol Oxidation: “Strong” And “Weak” Oxidants Demystifying Alcohol Oxidations Intramolecular Reactions Of Alcohols And Ethers Protecting Groups For Alcohols Thiols And Thioethers Synthesis (6) – Reactions Of Alcohols Conjugation, Molecular Orbitals, and Diels-Alder R Continue reading >>

Production And Metabolism Of Non-esterified Fatty Acids

Production And Metabolism Of Non-esterified Fatty Acids

Lipolysis of fat stored as triglycerides in adipose tissue occurs in response to increasing energy demands that cannot be adequately supplied by glucose. Hormones, such as glucagon, catecholamines, ACTH, corticosteroids and growth hormone, stimulate hormone-sensitive lipase, whereas insulin inhibits this enzyme. Lipolysis of triglycerides releases NEFAs (which are usually long-chain fatty acids) and glycerol. Glycerol is taken up by cells and used for glucose production or can be used to re-form triglycerides. NEFAs are water-insoluble and are transported bound to albumin. Once taken up by hepatocytes, NEFAs are esterified. The esterified fatty acids then have several fates: 1) They can recombine with glycerol to form triglycerides, which are packaged into VLDL. The VLDL are exported from the liver or (if produced in excess) are stored as fat within the hepatocyte (eventually causing lipidosis). 2) They can enter the mitochondria (in a reaction that requires carnitine) and be used for energy production (through the Kreb’s cycle) or ketone formation. Within the mitochondria, esterified fatty acids undergo β-oxidation to acetyl CoA. Acetyl CoA combines with oxaloacetate in the Kreb’s cycle (tricarboxylic acid cycle) to form citrate. Continued oxidation in this cycle leads to energy (ATP) production. If oxaloacetate supplies are low (oxaloacetate is used as a substrate for gluconeogenesis in states of negative energy balance), acetyl CoA is then used to form ketones. Continue reading >>

Synthesis Of Aldehydes & Ketones

Synthesis Of Aldehydes & Ketones

Aldehydes and ketones can be prepared using a wide variety of reactions. Although these reactions are discussed in greater detail in other sections, they are listed here as a summary and to help with planning multistep synthetic pathways. Please use the appropriate links to see more details about the reactions. Continue reading >>

Reactions Of Alcohols To Give Acetals

Reactions Of Alcohols To Give Acetals

Reactions of Alcohols to give Acetals Reaction type: Nucleophilic Addition then nucleophilic substitution Summary Typical reagents : excess ROH, catalytic p-toluenesulfonic acid (often written as TsOH) in refluxing benzene. Aldehydes and ketones react with two moles of an alcohol to give 1,1-geminal diethers more commonly known as acetals. The term "acetal" used to be restricted to systems derived from aldehydes and the term "ketal" applied to those from ketones, but chemists now use acetal to describe both. Acetals are biologically important due to their role in the chemistry of carbohydrates. Acetals are important chemically due to their role as "protecting groups" The equilibrium is shifted towards the acetal by using an excess of the alcohol and/or removing water as it forms. It is also possible to use 1,2- or 1,3-diols to form cyclic acetals, two common examples are shown below: Acetals can be readily converted back to the aldehyde or ketone by heating with aqueous acid. The mechanism for this is the reverse of that shown below for acetal formation. Study Tip: The important "piece" of an acetal is the central C which becomes the C of the carbonyl C=O. It can be recognised by looking for the C that is attached to two O atoms by single bonds. Related Reactions Reaction type: Oxidation - reduction Summary Aldehydes, RCHO, can be oxidised to carboxylic acids, RCO2H. Ketones are not oxidised under these conditions as they lack the critical H for the elimination to occur (see mechanism below). The reactive species in the oxidation is the hydrate formed when the aldehyde reacts with the water. Typical reagents are aqueous Cr (VI) species: Related Reactions Oxidation of Alcohols The Baeyer-Villager Reaction Reaction type: Oxidation-reduction via Nucleophilic addition Summa Continue reading >>

Synthesis Of Ketones

Synthesis Of Ketones

GENERAL EQUATION: OXIDATION OF SECONDARY ALCOHOLS secondary alcohol + (0) --> ketone + HOH reducing agent oxidizing agent Synthesis of Ketones - Oxidation of Secondary Alcohols: Aldehydes and ketones are synthesized by the oxidation of various kinds of alcohols. The definitions which are used in inorganic chemistry involving the gain or loss of electrons; or the increase or decrease in oxidation numbers are not very useful in organic chemistry. In organic chemistry, although changes in electrons are important, oxidation and reduction is more readily observed from changes in the number of hydrogen or oxygen atoms. The definitions are as follows: OXIDATION: loss of hydrogen, gain in oxygen, or loss of electrons REDUCTION: gain of hydrogen, loss of oxygen, or gain of electrons. The oxidation of secondary alcohols yields ketones. In the oxidation of an alcohol, the oxidizing agent, usually represented by (0), removes the hydrogen and electrons from the alcohol, the reducing agent. The "0" in the oxidizing agent is some unspecified oxygen atom which reacts with the hydrogen atoms to form water. The oxidation of a secondary alcohol leads to the formation of ketones. This relationship should be clear if you carefully consider the position of the -OH group in a secondary alcohol and the position of the carbonyl group in a ketone. Both functional groups are not on a terminal carbon. On the other hand, a primary alcohol and the aldehyde are on the terminal carbon. Synthesis of an Ketone: Example: 1) The hydrogen on the carbon is removed along with 2 electrons. 2) The hydrogen is removed from the oxygen as Hydrogen ion. 3) The two electrons which were bonded to hydrogen are used to form the double bond. 4) The H with 2 electrons, the hydrogen ion, and O (oxygen) from the oxidizing Continue reading >>

More in ketosis