diabetestalk.net

How Are Fatty Acids Converted To Glucose?

When Does Glucose Convert To Fat?

When Does Glucose Convert To Fat?

Despite the fact that eating a jelly doughnut seems to deposit fat directly on your hips, converting sugar to fat is actually a relatively complex chemical process. Sugar conversion to fat storage depends not only upon the type of foods you eat, but how much energy your body needs at the time you eat it. Video of the Day Your body converts excess dietary glucose into fat through the process of fatty acid synthesis. Fatty acids are required in order for your body to function properly, playing particularly important roles in proper brain functioning. There are two kinds of fatty acids; essential fatty acids and nonessential fatty acids. Essential fatty acids refer to fatty acids you must eat from your diet, as your body cannot make them. Nonessential fatty acids are made through the process of fatty acid synthesis. Fatty Acid Synthesis Fatty acids are long organic compounds having an acid group at one end and a methyl group at the other end. The location of their first double bond dictates whether they are in the omega 3, 6, or 9 fatty acid family. Fatty acid synthesis takes place in the cytoplasm of cells and requires some energy input. In other words, your body actually has to expend some energy in order to store fat. Glucose is a six-carbon sugar molecule. Your body first converts this molecule into two three-carbon pyruvate molecules through the process of glycolysis and then into acetyl CoA. When your body requires immediate energy, acetyl CoA enters the Citric Acid Cycle creating energy molecules in the form of ATP. When glucose intake exceeds your body's energy needs--for example, you eat an ice-cream sundae and then go relax on the sofa for five hours--your body has no need to create more energy molecules. Therefore, acetyl CoA begins the process of fatty acid syn Continue reading >>

Gluconeogenesis: Endogenous Glucose Synthesis

Gluconeogenesis: Endogenous Glucose Synthesis

Reactions of Gluconeogenesis: Gluconeogenesis from two moles of pyruvate to two moles of 1,3-bisphosphoglycerate consumes six moles of ATP. This makes the process of gluconeogenesis very costly from an energy standpoint considering that glucose oxidation to two moles of pyruvate yields two moles of ATP. The major hepatic substrates for gluconeogenesis (glycerol, lactate, alanine, and pyruvate) are enclosed in red boxes for highlighting. The reactions that take place in the mitochondria are pyruvate to OAA and OAA to malate. Pyruvate from the cytosol is transported across the inner mitochondrial membrane by the pyruvate transporter. Transport of pyruvate across the plasma membrane is catalyzed by the SLC16A1 protein (also called the monocarboxylic acid transporter 1, MCT1) and transport across the outer mitochondrial membrane involves a voltage-dependent porin transporter. Transport across the inner mitochondrial membrane requires a heterotetrameric transport complex (mitochondrial pyruvate carrier) consisting of the MPC1 gene and MPC2 gene encoded proteins. Following reduction of OAA to malate the malate is transported to the cytosol by the malate transporter (SLC25A11). In the cytosol the malate is oxidized to OAA and the OOA then feeds into the gluconeogenic pathway via conversion to PEP via PEPCK. The PEPCK reaction is another site for consumption of an ATP equivalent (GTP is utilized in the PEPCK reaction). The reversal of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction requires a supply of NADH. When lactate is the gluconeogenic substrate the NADH is supplied by the lactate dehydrogenase (LDH) reaction (indicated by the dashes lines), and it is supplied by the malate dehydrogenase reaction when pyruvate and alanine are the substrates. Secondly, one mo Continue reading >>

Fatty Acid Metabolism

Fatty Acid Metabolism

Fatty acid metabolism consists of catabolic processes that generate energy, and anabolic processes that create biologically important molecules (triglycerides, phospholipids, second messengers, local hormones and ketone bodies).[1] Fatty acids are a family of molecules classified within the lipid macronutrient class. One role of fatty acids in animal metabolism is energy production, captured in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle.[2] Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In addition, fatty acids are important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus). Fatty acids can also be cleaved, or partially cleaved, from their chemical attachments in the cell membrane to form second messengers within the cell, and local hormones in the immediate vicinity of the cell. The prostaglandins made from arachidonic acid stored in the cell membrane, are probably the most well known group of these local hormones. Fatty acid catabolism[edit] A diagrammatic illustration of the process of lipolysis (in a fat cell) induced by high epinephrine and low insulin levels in the blood. Epinephrine binds to a beta-adrenergic receptor in the cell membrane of the adipocyte, which causes cAMP to be generated inside Continue reading >>

Connections Of Carbohydrate, Protein, And Lipid Metabolic Pathways

Connections Of Carbohydrate, Protein, And Lipid Metabolic Pathways

Connecting Other Sugars to Glucose Metabolism Sugars, such as galactose, fructose, and glycogen, are catabolized into new products in order to enter the glycolytic pathway. Learning Objectives Identify the types of sugars involved in glucose metabolism Key Takeaways When blood sugar levels drop, glycogen is broken down into glucose -1-phosphate, which is then converted to glucose-6-phosphate and enters glycolysis for ATP production. In the liver, galactose is converted to glucose-6-phosphate in order to enter the glycolytic pathway. Fructose is converted into glycogen in the liver and then follows the same pathway as glycogen to enter glycolysis. Sucrose is broken down into glucose and fructose; glucose enters the pathway directly while fructose is converted to glycogen. disaccharide: A sugar, such as sucrose, maltose, or lactose, consisting of two monosaccharides combined together. glycogen: A polysaccharide that is the main form of carbohydrate storage in animals; converted to glucose as needed. monosaccharide: A simple sugar such as glucose, fructose, or deoxyribose that has a single ring. You have learned about the catabolism of glucose, which provides energy to living cells. But living things consume more than glucose for food. How does a turkey sandwich end up as ATP in your cells? This happens because all of the catabolic pathways for carbohydrates, proteins, and lipids eventually connect into glycolysis and the citric acid cycle pathways. Metabolic pathways should be thought of as porous; that is, substances enter from other pathways, and intermediates leave for other pathways. These pathways are not closed systems. Many of the substrates, intermediates, and products in a particular pathway are reactants in other pathways. Like sugars and amino acids, the catabo Continue reading >>

Gluconeogenesis

Gluconeogenesis

Not to be confused with Glycogenesis or Glyceroneogenesis. Simplified Gluconeogenesis Pathway Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis)[1] and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells.[4] In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs Continue reading >>

Glucose Can Be Synthesized From Noncarbohydrate Precursors - Biochemistry - Ncbi Bookshelf

Glucose Can Be Synthesized From Noncarbohydrate Precursors - Biochemistry - Ncbi Bookshelf

Glucose is formed by hydrolysis of glucose 6-phosphate in a reaction catalyzed by glucose 6-phosphatase. We will examine each of these steps in turn. 16.3.2. The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate The first step in gluconeogenesis is the carboxylation of pyruvate to form oxaloacetate at the expense of a molecule of ATP . Then, oxaloacetate is decarboxylated and phosphorylated to yield phosphoenolpyruvate, at the expense of the high phosphoryl-transfer potential of GTP . Both of these reactions take place inside the mitochondria. The first reaction is catalyzed by pyruvate carboxylase and the second by phosphoenolpyruvate carboxykinase. The sum of these reactions is: Pyruvate carboxylase is of special interest because of its structural, catalytic, and allosteric properties. The N-terminal 300 to 350 amino acids form an ATP -grasp domain ( Figure 16.25 ), which is a widely used ATP-activating domain to be discussed in more detail when we investigate nucleotide biosynthesis ( Section 25.1.1 ). The C -terminal 80 amino acids constitute a biotin-binding domain ( Figure 16.26 ) that we will see again in fatty acid synthesis ( Section 22.4.1 ). Biotin is a covalently attached prosthetic group, which serves as a carrier of activated CO2. The carboxylate group of biotin is linked to the -amino group of a specific lysine residue by an amide bond ( Figure 16.27 ). Note that biotin is attached to pyruvate carboxylase by a long, flexible chain. The carboxylation of pyruvate takes place in three stages: Recall that, in aqueous solutions, CO2 exists as HCO3- with the aid of carbonic anhydrase (Section 9.2). The HCO3- is activated to carboxyphosphate. This activated CO2 is subsequently bonded to the N-1 atom of the biotin ring to Continue reading >>

The Catabolism Of Fats And Proteins For Energy

The Catabolism Of Fats And Proteins For Energy

Before we get into anything, what does the word catabolism mean? When we went over catabolic and anabolic reactions, we said that catabolic reactions are the ones that break apart molecules. To remember what catabolic means, think of a CATastrophe where things are falling apart and breaking apart. You could also remember cats that tear apart your furniture. In order to make ATP for energy, the body breaks down mostly carbs, some fats and very small amounts of protein. Carbs are the go-to food, the favorite food that cells use to make ATP but now we’re going to see how our cells use fats and proteins for energy. What we’re going to find is that they are ALL going to be turned into sugars (acetyl) as this picture below shows. First let’s do a quick review of things you already know because it is assumed you learned cell respiration already and how glucose levels are regulated in your blood! Glucose can be stored as glycogen through a process known as glycogenesis. The hormone that promotes this process is insulin. Then when glycogen needs to be broken down, the hormone glucagon, promotes glycogenolysis (Glycogen-o-lysis) to break apart the glycogen and increase the blood sugar level. Glucose breaks down to form phosphoglycerate (PGAL) and then pyruvic acid. What do we call this process of splitting glucose into two pyruvic sugars? That’s glycolysis (glyco=glucose, and -lysis is to break down). When there’s not enough oxygen, pyruvic acid is converted into lactic acid. When oxygen becomes available, lactic acid is converted back to pyruvic acid. Remember that this all occurs in the cytoplasm. The pyruvates are then, aerobically, broken apart in the mitochondria into Acetyl-CoA. The acetyl sugars are put into the Krebs citric acid cycle and they are totally broken Continue reading >>

Why Can Fatty Acids Not Be Converted Into Glucose? : Mcat

Why Can Fatty Acids Not Be Converted Into Glucose? : Mcat

Rudeness or trolling will not be tolerated. Be nice to each other, hating on other users won't help you get extra points on the MCAT, so why do it? Do not post any question information from any resource in the title of your post. These are considered spoilers and should be marked as such. For an example format for submitting pictures of questions from practice material click here Do not link to content that infringes on copyright laws (MCAT torrents, third party resources, etc). Do not post repeat "GOOD LUCK", "TEST SCORE", or test reaction posts. We have one "stickied" post for each exam and score release day, contain all test day discussion/reactions to that thread only. Do not discuss any specific information from your actual MCAT exam. You have signed an examinee agreement, and it will be enforced on this subreddit. Do not intentionally advertise paid products or services of any sort. These posts will be removed and the user banned without warning, subject to the discretion of the mod team Learn More All of the above rules are subject to moderator discretion C/P = Chemical and Physical Foundations of Biological Systems CARS = Critical Analysis and Reasoning Skills B/B = Biological and Biochemical Foundations of Living Systems P/S = Psychological, Social, and Biological Foundations of Behavior Continue reading >>

Lipid Metabolism

Lipid Metabolism

on on Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors ([link]). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids. Lipid metabolism begins in the intestine where ingested triglycerides are broken down into smaller chain fatty acids and subsequently into monoglyceride molecules (see [link]b) by pancreatic lipases, enzymes that break down fats after they are emulsified by bile salts. When food reaches the small intestine in the form of chyme, a digestive hormone called cholecystokinin (CCK) is released by intestinal cells in the intestinal mucosa. CCK stimulates the release of pancreatic lipase from the pancreas and stimulates the contraction of the gallbladder to release stored bile salts into the intestine. CCK also travels to the brain, where it can act as a hunger suppressant. Together, the pancreatic lipases and bile salts break down triglycerides into free fatty acids. These fatty acids can be transported across the intestinal membrane. However, once they cross the membrane, they are recombined to again form triglyceride molecules. Within the intestinal cells, these triglycerides are packaged along with cholesterol molecules in phospholipid vesicles called chylomicrons ([link]). The chylomicrons enable fats and cholesterol to move within the aqueous environment of your lymphatic and circulatory systems. Chylomicrons leave the enterocytes by exocytosis and enter the lymphatic system via lacteals in the villi of the intestine. From the lymphatic system, the chylo Continue reading >>

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. In fact this is so important that it should be written in italics and have its own bold heading! But it’s not quite right. Making glucose from fatty acids is low-paying work. It’s not the type of alchemy that would allow us to build imperial palaces out of sugar cubes or offer hourly sweet sacrifices upon the altar of the glorious god of glucose (God forbid!). But it can be done, and it’ll help pay the bills when times are tight. All Aboard the Acetyl CoA! When we’re running primarily on fatty acids, our livers break the bulk of these fatty acids down into two-carbon units called acetate. When acetate hangs out all by its lonesome like it does in a bottle of vinegar, it’s called acetic acid and it gives vinegar its characteristic smell. Our livers aren’t bottles of vinegar, however, and they do things a bit differently. They have a little shuttle called coenzyme A, or “CoA” for short, that carries acetate wherever it needs to go. When the acetate passenger is loaded onto the CoA shuttle, we refer to the whole shebang as acetyl CoA. As acetyl CoA moves its caboose along the biochemical railway, it eventually reaches a crossroads where it has to decide whether to enter the Land of Ketogenesis or traverse the TCA cycle. The Land of Ketogenesis is a quite magical place to which we’ll return in a few moments, but n Continue reading >>

Can Fats Be Turned Into Glycogen For Muscle?

Can Fats Be Turned Into Glycogen For Muscle?

The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

The Conversion Of Glucose And Fructose To Fatty Acids In The Human Liver

The Conversion Of Glucose And Fructose To Fatty Acids In The Human Liver

Volume 2, Issue 6 , June 1969, Pages 427-437 The conversion of glucose and fructose to fatty acids in the human liver Author links open overlay panel DavidZakim2 Robert H.Herman W.CarlGordonJr. Get rights and content The capacity of the human liver for the glycolysis of fructose is greater than that for glucose as indicated by the greater activity of fructose glycolytic enzymes. In human liver slices [14C6] fructose was metabolized to fatty acids, CO2, and glyceride-glycerol at a greater rate than [14C6] glucose. The conversion of [14C6] glucose to fatty acids was dependent on the medium glucose concentration. These results, in the human liver, are similar to those in the rat. The rate of fatty acid synthesis in human liver is related directly to the rate of glycolysis. This dependence of fatty acid synthesis on the glycolytic rate seems to result from the fact that hepatic fatty acid synthesis is limited by the availability of substrate. The increased lipogenic potential associated with fructose as compared to glucose or with very high glucose concentrations could explain, in part, the differential effects of different carbohydrates on the plasma triglyceride concentration in man. Continue reading >>

Evolving Health: Why Can't We Convert Fat To Glucose?

Evolving Health: Why Can't We Convert Fat To Glucose?

As evident by many sugar-laden soda pop "potbellies" of North America, lipogenesis can obviously occur from drinking and eating too much sugar (1). Wouldnt it be just grand to reverse the process and be able to lose all that fat via gluconeogenesis? Unfortunately mammals do not have the ability to synthesize glucose from fats (1). The fact is that once glucose is converted to acetyl coA there is no method of getting back to glucose. The pyruvate dehydrogenase reaction that converts pyruvate to acetyl CoA is not reversible (1p252). Because lipid metabolism produces acetyl CoA via beta-oxidation, there can be no conversion to pyruvate or oxaloacetate that may have been used for gluconeogenesis (1p252). Further, the two carbons in the acetyl CoA molecule are lost upon entering the citric acid cycle (1p252). Thus, the acetyl CoA is used for energy (1p252). There are some fatty acids that have an odd number of carbon atoms that can be converted to glucose, but these are not common in the diet (1p253). Maybe they should be made more common. Do they taste good? 1. Gropper SS, Smith JL, Groff JL. Advanced Nutrition and Human Metabolism. Belmont, CA: Thomson Wadsworth, 2009. Continue reading >>

Why Can't Animals Turn Fatty Acids Into Glucose?

Why Can't Animals Turn Fatty Acids Into Glucose?

Animals can’t turn fatty acids into glucose because fatty acids are metabolized 2 carbons at a time into the acetyl units of acetyl-CoA, and we have no enzymes to convert acetyl-CoA into pyruvate or any other metabolite in the gluconeogenesis pathway. Essentially, as I tell my students, the pyruvate dehydrogenase reaction is crossing the Rubicon: once it’s done, you can’t go back. The oxidative decarboxylation of pyruvate is irreversible, and there is no reverse bypass in animal cells. Acetyl-CoA of course enters the Krebs cycle, which ends with oxaloacetate, which is on the gluconeogenic pathway, but the Krebs cycle starts by reacting acetyl-CoA with OAA, and thus OAA production is balanced by OAA consumption: there is no net conversion of acetyl-CoA into OAA. Plants, fungi, and some microbes do have a way to do this: a bypass in the Krebs cycle called the glyoxylate cycle. Isocitrate, instead of being oxidized to alpha-ketoglutarate, is split into succinate and glyoxylate (HC(O)-COO), by an enzyme called isocitrate lyase. The glyoxylate reacts with another acetyl-CoA to form malate, in a reaction catalyzed by malate synthase. The succinate and malate both undergo their usual reactions in the Krebs cycle, resulting in the formation of two oxaloacetates. Thus the cell achieves a net conversion of two acetyl-CoA into OAA, and the OAA can be used for gluconeogenesis. This allows, among other things, plant seeds to store energy and carbon in the form of fats, but use them to create glucose and thus cellulose for cell walls when the seed germinates into a sprout. If we had isocitrate lyase and malate synthase, we could do this trick to, and diabetics wouldn’t have to worry about ketoacidosis. But, we don’t. Edit: for the sake of accuracy, I should mention that fat Continue reading >>

Does Fat Convert To Glucose In The Body?

Does Fat Convert To Glucose In The Body?

Your body is an amazing machine that is able to extract energy from just about anything you eat. While glucose is your body's preferred energy source, you can't convert fat into glucose for energy; instead, fatty acids or ketones are used to supply your body with energy from fat. Video of the Day Fat is a concentrated source of energy, and it generally supplies about half the energy you burn daily. During digestion and metabolism, the fat in the food you eat is broken down into fatty acids and glycerol, which are emulsified and absorbed into your blood stream. While some tissues -- including your muscles -- can use fatty acids for energy, your brain can't convert fatty acids to fuel. If you eat more fat than your body needs, the extra is stored in fat cells for later use. Fat has more than twice as many calories per gram as carbs and protein, which makes it an efficient form of stored energy. It would take more than 20 pounds of glycogen -- a type of carbohydrate used for fuel -- to store the same amount of energy in just 10 pounds of fat. Your Body Makes Glucose From Carbs Almost all the glucose in your body originated from carbohydrates, which come from the fruit, vegetables, grains and milk in your diet. When you eat these carb-containing foods, your digestive system breaks them down into glucose, which is then used for energy by your cells. Any excess glucose is converted into glycogen, then stored in your muscles and liver for later use. Once you can't store any more glucose or glycogen, your body stores any leftover carbs as fat. Glucose is your brain's preferred source of energy. However, when glucose is in short supply, your brain can use ketones -- which are derived from fat -- for fuel. Since your brain accounts for approximately one-fifth of your daily calori Continue reading >>

More in ketosis