
We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!
Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. In fact this is so important that it should be written in italics and have its own bold heading! But it’s not quite right. Making glucose from fatty acids is low-paying work. It’s not the type of alchemy that would allow us to build imperial palaces out of sugar cubes or offer hourly sweet sacrifices upon the altar of the glorious god of glucose (God forbid!). But it can be done, and it’ll help pay the bills when times are tight. All Aboard the Acetyl CoA! When we’re running primarily on fatty acids, our livers break the bulk of these fatty acids down into two-carbon units called acetate. When acetate hangs out all by its lonesome like it does in a bottle of vinegar, it’s called acetic acid and it gives vinegar its characteristic smell. Our livers aren’t bottles of vinegar, however, and they do things a bit differently. They have a little shuttle called coenzyme A, or “CoA” for short, that carries acetate wherever it needs to go. When the acetate passenger is loaded onto the CoA shuttle, we refer to the whole shebang as acetyl CoA. As acetyl CoA moves its caboose along the biochemical railway, it eventually reaches a crossroads where it has to decide whether to enter the Land of Ketogenesis or traverse the TCA cycle. The Land of Ketogenesis is a quite magical place to which we’ll return in a few moments, but n Continue reading >>
- International Textbook of Diabetes Mellitus, 4th Ed., Excerpt #82: Insulin Actions In Vivo: Glucose Metabolism Part 9 of 9
- World's first diabetes app will be able to check glucose levels without drawing a drop of blood and will be able to reveal what a can of coke REALLY does to sugar levels
- International Textbook of Diabetes Mellitus, 4th Ed., Excerpt #59: Mechanisms of insulin signal transduction Part 3 of 8

The Catabolism Of Fats And Proteins For Energy
Before we get into anything, what does the word catabolism mean? When we went over catabolic and anabolic reactions, we said that catabolic reactions are the ones that break apart molecules. To remember what catabolic means, think of a CATastrophe where things are falling apart and breaking apart. You could also remember cats that tear apart your furniture. In order to make ATP for energy, the body breaks down mostly carbs, some fats and very small amounts of protein. Carbs are the go-to food, the favorite food that cells use to make ATP but now we’re going to see how our cells use fats and proteins for energy. What we’re going to find is that they are ALL going to be turned into sugars (acetyl) as this picture below shows. First let’s do a quick review of things you already know because it is assumed you learned cell respiration already and how glucose levels are regulated in your blood! Glucose can be stored as glycogen through a process known as glycogenesis. The hormone that promotes this process is insulin. Then when glycogen needs to be broken down, the hormone glucagon, promotes glycogenolysis (Glycogen-o-lysis) to break apart the glycogen and increase the blood sugar level. Glucose breaks down to form phosphoglycerate (PGAL) and then pyruvic acid. What do we call this process of splitting glucose into two pyruvic sugars? That’s glycolysis (glyco=glucose, and -lysis is to break down). When there’s not enough oxygen, pyruvic acid is converted into lactic acid. When oxygen becomes available, lactic acid is converted back to pyruvic acid. Remember that this all occurs in the cytoplasm. The pyruvates are then, aerobically, broken apart in the mitochondria into Acetyl-CoA. The acetyl sugars are put into the Krebs citric acid cycle and they are totally broken Continue reading >>

How The Body Uses Carbohydrates, Proteins, And Fats
How the Body Uses Carbohydrates, Proteins, and Fats The human body is remarkably adept at making do with whatever type of food is available. Our ability to survive on a variety of diets has been a vital adaptation for a species that evolved under conditions where food sources were scarce and unpredictable. Imagine if you had to depend on successfully hunting a woolly mammoth or stumbling upon a berry bush for sustenance! Today, calories are mostly cheap and plentifulperhaps too much so. Understanding what the basic macronutrients have to offer can help us make better choices when it comes to our own diets. From the moment a bite of food enters the mouth, each morsel of nutrition within starts to be broken down for use by the body. So begins the process of metabolism, the series of chemical reactions that transform food into components that can be used for the body's basic processes. Proteins, carbohydrates , and fats move along intersecting sets of metabolic pathways that are unique to each major nutrient. Fundamentallyif all three nutrients are abundant in the dietcarbohydrates and fats will be used primarily for energy while proteins provide the raw materials for making hormones, muscle, and other essential biological equipment. Proteins in food are broken down into pieces (called amino acids) that are then used to build new proteins with specific functions, such as catalyzing chemical reactions, facilitating communication between different cells, or transporting biological molecules from here to there. When there is a shortage of fats or carbohydrates, proteins can also yield energy. Fats typically provide more than half of the body's energy needs. Fat from food is broken down into fatty acids, which can travel in the blood and be captured by hungry cells. Fatty aci Continue reading >>

Can Fats Be Turned Into Glycogen For Muscle?
The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

Does Carbohydrate Become Body Fat?
Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

Metabolic Pathways
There are three groups of molecules that form the core building blocks and fuel substrates in the body: carbohydrates (glucose and other sugars); proteins and their constituent amino acids; and lipids and their constituent fatty acids. The biochemical processes that allow these molecules to be synthesized and stored (anabolism) or broken down to generate energy (catabolism) are referred to as metabolic pathways. Glucose metabolism involves the anabolic pathways of gluconeogenesis and glycogenesis, and the catabolic pathways of glycogenolysis and glycolysis. Lipid metabolism involves the anabolic pathways of fatty acid synthesis and lipogenesis and the catabolic pathways of lipolysis and fatty acid oxidation. Protein metabolism involves the anabolic pathways of amino acid synthesis and protein synthesis and the catabolic pathways of proteolysis and amino acid oxidation. Under conditions when glucose levels inside the cell are low (such as fasting, sustained exercise, starvation or diabetes), lipid and protein catabolism includes the synthesis (ketogenesis) and utilization (ketolysis) of ketone bodies. The end products of glycolysis, fatty acid oxidation, amino acid oxidation and ketone body degradation can be oxidised to carbon dioxide and water via the sequential actions of the tricarboxylic acid cycle and oxidative phosphorylation, generating many molecules of the high energy substrate adenosine triphosphate (ATP). Interplay between metabolic pathways The interplay between glucose metabolism, lipid metabolism, ketone body metabolism and protein and amino acid metabolism is summarized in Figure 1. Amino acids can be a source of glucose synthesis as well as energy production and excess glucose that is not required for energy production can be stored as glycogen or metabo Continue reading >>

Conversion Of Carbohydrate To Fat In Adipose Tissue: An Energy-yielding And,therefore, Self-limiting Process.
Conversion of carbohydrate to fat in adipose tissue: an energy-yielding and,therefore, self-limiting process. A theoretical analysis of the energy metabolism associated with the conversion ofglucose to fat is presented. In tissues where the pentose cycle furnishes some ofthe NADPH required for fatty acid synthesis, this conversion is an ATP-yieldingprocess. In rat adipose tissue the maximal rate of glucose conversion to fat can be quantatively predicted on the basis of the tissue's ability to use the ATPwhich is generated in excess during this conversion. The energy-generating natureof this process provides the means for a type of regulation which depends onmetabolic state and which, during fasting, contributes to the sparing ofcarbohydrate. Impairment of lipogenesis in the fasting state is attributed to adecrease in the activity of the malate cycle and to the presence of free fattyacids. However, rather than by inhibiting specific enzymes, it is by virtue oftheir quality as substrates for energy production that free fatty acids and theirCoA derivatives appear to inhibit de novo lipogenesis. The regulatory phenomenadiscussed here may explain the failure of the attempts made to identify therate-limiting step for de novo lipogenesis in adipose tissue. Continue reading >>

How Are Carbohydrates Converted Into Fat Deposits?
How are carbohydrates converted into fat deposits? There are two ways that carbohydrates and body fat interact. One is directly by turning into body fat, and the other is via insulin. Turning into body fat is like adding fat into the fat cells, whereas carbohydrates spiking insulin does not add anything to fat cells per se, but hinders the release. The former is like a + equation, where the latter is a double negative which results in something that seems positive. There is a process called de novo lipogenesis (literally: Creation of fat from non-fat sources) that can occur in the body. This process turns glucose into lipids, which are then stored as body fat. This process is normally quite inefficient in the body [1] , which suggests that carbohydrates cannot be stored as fat to a high degree. The process can be upregulated (enhanced) if dietary fat comprised almost none of the diet (lesser than 10%, as a rough estimate), if carbohydrate intake is excessively high for a period of a few days, or if one follows an obesogenic diet (diet that is likely to make you fat) for a prolonged period of time. [1] [2] [3] Carbohydrates spike insulin , which is a hormone that mediates glucose metabolism. Insulin is not good or bad, insulin is insulin. It can be thought of as a lever that switches the body from fat burning mode into carbohydrate burning mode. This allows carbohydrates (and glycogen) to be burnt at a greater rate, but directly reduces the ability of fat to be lost. Overall metabolic rate (calories burnt over the course of a day) does not change significantly, just where the calories come from. When insulin is spiked in presence of ingested dietary fat, the dietary fat can go into body fat stores and not be released since glucose from glycogen is being used in place of Continue reading >>

Converting Carbohydrates To Triglycerides
Consumers are inundated with diet solutions on a daily basis. High protein, low fat, non-impact carbohydrates, and other marketing “adjectives” are abundant within food manufacturing advertising. Of all the food descriptors, the most common ones individuals look for are “fat free” or “low fat”. Food and snack companies have found the low fat food market to be financially lucrative. The tie between fat intake, weight gain, and health risks has been well documented. The dietary guidelines suggest to keep fat intake to no more than 30% of the total diet and to consume foods low in saturated and trans fatty acids. But, this does not mean that we can consume as much fat free food as we want: “Fat free does not mean calorie free.” In many cases the foods that are low in fat have a large amount of carbohydrates. Carbohydrate intake, like any nutrient, can lead to adverse affects when over consumed. Carbohydrates are a necessary macronutrient, vital for maintenance of the nervous system and energy for physical activity. However, if consumed in amounts greater than 55% to 65% of total caloric intake as recommended by the American Heart Association can cause an increase in health risks. According to the World Health Organization the Upper Limit for carbohydrates for average people is 60% of the total dietary intake. Carbohydrates are formed in plants where carbons are bonded with oxygen and hydrogen to form chains of varying complexity. The complexity of the chains ultimately determines the carbohydrate classification and how they will digest and be absorbed in the body. Mono-and disaccharides are classified as simple carbohydrates, whereas polysaccharides (starch and fiber) are classified as complex. All carbohydrates are broken down into monosaccharides before b Continue reading >>

Lipid Metabolism - An Overview | Sciencedirect Topics
Isabelle Coppens, ... Stanislas Tomavo, in Toxoplasma Gondii (Second Edition) , 2014 Fatty Acid Biosynthetic Pathways Generalities 270 Phospholipid Biosynthetic Pathways Generalities 274 Phospholipid Composition and Physiological Relevance in Toxoplasma 274 Glycerolipid Biosynthetic Pathways Generalities 277 Sterol Lipid Biosynthetic Pathways Generalities 278 Sterol Salvage and Transport in Toxoplasma 279 Sphingolipid Biosynthetic Pathways Generalities 280 Isoprenoid Biosynthetic Pathways Generalities 282 Balasubramaniyan Vairappan PhD, in Molecular Aspects of Alcohol and Nutrition , 2016 Prime Involvement of Leptin on Regulation of Lipid Metabolism Lipid metabolism is regulated by several hormones, and leptin is considered one of them. It is a balance between lipid synthesis and degradation that determines fat mass. Over 90% of total energy reserves are stored in adipocytes, such as TG, that can be hydrolyzed (lipolysis) following hormonal stimulation to release FA. FA has two possible fates: -oxidation to produce ATP, or re-esterification back into TG. Many studies have shown that leptin has a direct autocrine or paracrine mode of action on lipid metabolism.104,107,116 Leptin appears to mediate FA metabolism by changing enzyme mRNA levels and concentration. For example, the presence of leptin inhibits the expression of acetyl-CoA carboxylase (ACC) in adipocytes,117 a rate-limiting enzyme for long chain FA synthesis, and is essential for the conversion of carbohydrates to FA, and caloric storage as TG. This stimulation of FA oxidation is probably the key event for the tissue lipid lowering and insulin-sensitizing effects of leptin. This was demonstrated recently to occur through direct or indirect (via either the central nervous system, or a putative inhibition of ste Continue reading >>
- Effect of Probiotics on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus: A Meta-Analysis of 12 Randomized Controlled Trials
- Impact of menopause and diabetes on atherogenic lipid profile: is it worth to analyse lipoprotein subfractions to assess cardiovascular risk in women?
- Exercise and Glucose Metabolism in Persons with Diabetes Mellitus: Perspectives on the Role for Continuous Glucose Monitoring

The Science Behind Fat Metabolism
Per the usual disclaimer, always consult with your doctor before experimenting with your diet (seriously, go see a doctor, get data from blood tests, etc.). Please feel free to comment below if you’re aware of anything that should be updated; I’d appreciate knowing and I’ll update the content quickly. My goal here is to help a scientifically curious audience know the basic story and where to dive in for further study. If I’m successful, the pros will say “duh”, and everyone else will be better informed about how this all works. [UPDATE: based on a ton a helpful feedback and questions on the content below, I’ve written up a separate article summarizing the science behind ketogenic (low-carb) diets. Check it out. Also, the below content has been updated and is still very much applicable to fat metabolism on various kinds of diets. Thanks, everyone!] tl;dr The concentration of glucose in your blood is the critical upstream switch that places your body into a “fat-storing” or “fat-burning” state. The metabolic efficiency of either state — and the time it takes to get into one from the other — depends on a large variety of factors such as food and drink volume and composition, vitamin and mineral balances, stress, hydration, liver and pancreas function, insulin sensitivity, exercise, mental health, and sleep. Carbohydrates you eat, with the exception of indigestible forms like most fibers, eventually become glucose in your blood. Assuming your metabolism is functioning normally, if the switch is on you will store fat. If the switch is off, you will burn fat. Therefore, all things being equal, “diets” are just ways of hacking your body into a sufficiently low-glycemic state to trigger the release of a variety of hormones that, in turn, result in Continue reading >>
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure.
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure
- This Incredible Detox Drink Helps You Burn Fat, Lower Blood Pressur,Fight Diabetes And Boost Metabolism

Fatty Acid Metabolism
Fatty acid metabolism consists of catabolic processes that generate energy, and anabolic processes that create biologically important molecules (triglycerides, phospholipids, second messengers, local hormones and ketone bodies).[1] Fatty acids are a family of molecules classified within the lipid macronutrient class. One role of fatty acids in animal metabolism is energy production, captured in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle.[2] Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In addition, fatty acids are important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus). Fatty acids can also be cleaved, or partially cleaved, from their chemical attachments in the cell membrane to form second messengers within the cell, and local hormones in the immediate vicinity of the cell. The prostaglandins made from arachidonic acid stored in the cell membrane, are probably the most well known group of these local hormones. Fatty acid catabolism[edit] A diagrammatic illustration of the process of lipolysis (in a fat cell) induced by high epinephrine and low insulin levels in the blood. Epinephrine binds to a beta-adrenergic receptor in the cell membrane of the adipocyte, which causes cAMP to be generated inside Continue reading >>

Pathways In The Coordination Of Cellular Glucose And Fat Metabolism
Pathways in the coordination of cellular glucose and fat metabolism Last Updated on Sat, 04 Mar 2017 | Fatty Acids The metabolism of fat and carbohydrate are closely linked; optimal oxidation of fat and conservation of glucose occur in the fed state and the opposite in the fasted state. Current theory identifies two major biochemical pathways as central components of this integrated coordination of energy metabolism . These are the glucose-fatty acid cycle first described in 1963 (Randle et al., 1963) and the malonyl CoA / carnitine palmitoyl transferase (CPT)-1 pathway which was suggested by the studies of McGarry and coworkers in the late 1970s (McGarry et al., 1977). Importantly, these two pathways complement each other (Fig. 2.1). The glucose- fatty acid cycle links carbohydrate and fat metabolism and was one of the first theories to describe how fatty acids influence glucose metabolism . It centres on the proposition that increased beta-oxidation (utilisation) of fatty acids in skeletal muscle results in a reduced uptake and oxidation of glucose (Fig. 2.1), offering additional fine-tuning to the 'coarse' control of glucose and fat utilisation that is enforced at whole body level, by insulin (Frayn, 2003). Although recent advances in the study of whole body glucose metabolism in humans using nuclear magnetic resonance (NMR) spectroscopy, have challenged details of the glucose fatty acid cycle theory, they do confirm that fatty acids can antagonise glucose metabolism and insulin action at cellular level (Shulman, 2000). Fig. 2.1 Schematic diagram representing the fatty acid/glucose cycle and the malonyl CoA/CPT-1 system involved in coordination of glucose and lipid metabolism. The malonyl CoA/CPT-1 pathway operates in a reverse manner to the glucose fatty acid cycle Continue reading >>
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure.
- This Incredible Detox Drink Helps You Burn Fat, Boost Metabolism, Fight Diabetes And Lower Blood Pressure
- This Incredible Detox Drink Helps You Burn Fat, Lower Blood Pressur,Fight Diabetes And Boost Metabolism

Physiologic Effects Of Insulin
Stand on a streetcorner and ask people if they know what insulin is, and many will reply, "Doesn't it have something to do with blood sugar?" Indeed, that is correct, but such a response is a bit like saying "Mozart? Wasn't he some kind of a musician?" Insulin is a key player in the control of intermediary metabolism, and the big picture is that it organizes the use of fuels for either storage or oxidation. Through these activities, insulin has profound effects on both carbohydrate and lipid metabolism, and significant influences on protein and mineral metabolism. Consequently, derangements in insulin signalling have widespread and devastating effects on many organs and tissues. The Insulin Receptor and Mechanism of Action Like the receptors for other protein hormones, the receptor for insulin is embedded in the plasma membrane. The insulin receptor is composed of two alpha subunits and two beta subunits linked by disulfide bonds. The alpha chains are entirely extracellular and house insulin binding domains, while the linked beta chains penetrate through the plasma membrane. The insulin receptor is a tyrosine kinase. In other words, it functions as an enzyme that transfers phosphate groups from ATP to tyrosine residues on intracellular target proteins. Binding of insulin to the alpha subunits causes the beta subunits to phosphorylate themselves (autophosphorylation), thus activating the catalytic activity of the receptor. The activated receptor then phosphorylates a number of intracellular proteins, which in turn alters their activity, thereby generating a biological response. Several intracellular proteins have been identified as phosphorylation substrates for the insulin receptor, the best-studied of which is insulin receptor substrate 1 or IRS-1. When IRS-1 is activa Continue reading >>

When Does Glucose Convert To Fat?
Despite the fact that eating a jelly doughnut seems to deposit fat directly on your hips, converting sugar to fat is actually a relatively complex chemical process. Sugar conversion to fat storage depends not only upon the type of foods you eat, but how much energy your body needs at the time you eat it. Video of the Day Your body converts excess dietary glucose into fat through the process of fatty acid synthesis. Fatty acids are required in order for your body to function properly, playing particularly important roles in proper brain functioning. There are two kinds of fatty acids; essential fatty acids and nonessential fatty acids. Essential fatty acids refer to fatty acids you must eat from your diet, as your body cannot make them. Nonessential fatty acids are made through the process of fatty acid synthesis. Fatty Acid Synthesis Fatty acids are long organic compounds having an acid group at one end and a methyl group at the other end. The location of their first double bond dictates whether they are in the omega 3, 6, or 9 fatty acid family. Fatty acid synthesis takes place in the cytoplasm of cells and requires some energy input. In other words, your body actually has to expend some energy in order to store fat. Glucose is a six-carbon sugar molecule. Your body first converts this molecule into two three-carbon pyruvate molecules through the process of glycolysis and then into acetyl CoA. When your body requires immediate energy, acetyl CoA enters the Citric Acid Cycle creating energy molecules in the form of ATP. When glucose intake exceeds your body's energy needs--for example, you eat an ice-cream sundae and then go relax on the sofa for five hours--your body has no need to create more energy molecules. Therefore, acetyl CoA begins the process of fatty acid syn Continue reading >>