diabetestalk.net

Glucose Fat And Protein Metabolism

Metabolism And Energetics

Metabolism And Energetics

Metabolism basically refers to all the chemical reactions within the body used to produce energy. This involves a complex set of processes that convert fuels into specialised compounds loaded with energy. In the body, the primary final agent to produce energy is called adenosine triphosphate (ATP) . When ATP is broken down or used by cells huge amounts of energy is released. This energy is essential for cells to grow and divide, synthesise important compounds, for muscles to contract and numerous other important functions. Metabolism therefore produces energy to perform all the functions of different tissues within the body. Metabolism works by breaking down foods in the diet or compounds in the body into their smaller components. These can then enter into special reactions to produce ATP. The left over components are recycled by the body and used to regenerate the original compounds. The body has three main types of molecules it uses for energy: Carbohydrates: These are the sugar type compounds in the body. Carbohydrates come from foods such as bread, cereal, potatoes, fruits and sugar-containing foods or bevarages. When carbohydrates are digested in the gastrointestinal system they are broken down into smaller molecules such as glucose (a simple sugar). The main storage sites for carbohydrates in the body are the liver and muscles. Lipids: This basically refers to fats (such as cholesterol) from the diet or stored in adipose tissue (in other words the body fat). Lipids are broken down into smaller components called fatty acids for energy. Therefore lipids are really just chains of fatty acids joined together. Proteins: These make up nearly three quarters of all the solid materials in the body. Proteins are thus the basic structural components in the body. They are ma Continue reading >>

Protein, Fat, And Blood Sugar: Protein Metabolism

Protein, Fat, And Blood Sugar: Protein Metabolism

During protein metabolism, some protein is converted to glucose in a processcalled gluconeogenesis, the formation of glucose fromnon-carbohydrate sources. The basic difference between protein and carbohydrate is that while carbohydrates aremade out of simple sugars (carbon, hydrogen, and oxygen), protein is made fromamino acids (carbon, hydrogen, oxygen, nitrogen, and sufur). The nitrogen isa basic component of the protein's amino acids and accounts for 13 to 20% ofthe total mass. The first step in protein metabolism is to break it into its constituent amino acids.These are absorbed into the blood stream. The second step is to break down the amino acids into their constituentparts--catabolism, if you want to get technical about it. This removes the nitrogen oramino group from the amino acids. The process is called deamination. Deamination breaks the amino group down into ammonia and what is termed the carbonskeleton. Ammonia is converted to urea, filtered through the kidneys, and excreted inurine. The carbon skeleton--which is composed of carbon, hydrogen, andoxygen--can then by used either for protein synthesis, energyproduction (ATP), or converted to glucose by gluconeogenesis. Most authorities believe that the amount of protein converted to glucose isquite small, except under conditions of intense exercise or metablicstarvation. Under these conditions amino acids produce the major source ofglucose for blood sugar maintenance. Continue reading >>

Protein Metabolism In Human Obesity: Relationship With Glucose And Lipid Metabolism And With Visceral Adipose Tissue

Protein Metabolism In Human Obesity: Relationship With Glucose And Lipid Metabolism And With Visceral Adipose Tissue

The Journal of Clinical Endocrinology & Metabolism Protein Metabolism in Human Obesity: Relationship with Glucose and Lipid Metabolism and with Visceral Adipose Tissue Department of Internal Medicine, University of Ferrara (A.S.), Ferrara Search for other works by this author on: the Division of Endocrinology and Metabolic Diseases, University of Verona (E.B., R.B.), Verona Search for other works by this author on: the Division of Endocrinology and Metabolic Diseases, University of Verona (E.B., R.B.), Verona Search for other works by this author on: the Department of Internal Medicine, University of Catania (P.C.), Catania, Italy Search for other works by this author on: the Diabetes Division, University of Texas Health Science Center (R.A.D.), San Antonio, Texas 78226 Search for other works by this author on: The Journal of Clinical Endocrinology & Metabolism, Volume 82, Issue 8, 1 August 1997, Pages 25522558, Anna Solini, Enzo Bonora, Riccardo Bonadonna, Pietro Castellino, Ralph A. DeFronzo; Protein Metabolism in Human Obesity: Relationship with Glucose and Lipid Metabolism and with Visceral Adipose Tissue, The Journal of Clinical Endocrinology & Metabolism, Volume 82, Issue 8, 1 August 1997, Pages 25522558, It is controversial whether metabolic disorders of human obesity include protein metabolism. Even less information is available concerning the effect of fat distribution on protein metabolism. Therefore, a comprehensive evaluation of glucose, lipid, and protein metabolism was performed in 11 obese nondiabetic and 9 normal women whose body composition and regional fat distribution were determined.[ 1-14C]Leucine and [3-3H]glucose were infused in the postabsorptive state and during an euglycemic hyperinsulinemic (3540 U/mL) clamp combined with indirect calorimetry Continue reading >>

Protein: Metabolism And Effect On Blood Glucose Levels.

Protein: Metabolism And Effect On Blood Glucose Levels.

Abstract Insulin is required for carbohydrate, fat, and protein to be metabolized. With respect to carbohydrate from a clinical standpoint, the major determinate of the glycemic response is the total amount of carbohydrate ingested rather than the source of the carbohydrate. This fact is the basic principle of carbohydrate counting for meal planning. Fat has little, if any, effect on blood glucose levels, although a high fat intake does appear to contribute to insulin resistance. Protein has a minimal effect on blood glucose levels with adequate insulin. However, with insulin deficiency, gluconeogenesis proceeds rapidly and contributes to an elevated blood glucose level. With adequate insulin, the blood glucose response in persons with diabetes would be expected to be similar to the blood glucose response in persons without diabetes. The reason why protein does not increase blood glucose levels is unclear. Several possibilities might explain the response: a slow conversion of protein to glucose, less protein being converted to glucose and released than previously thought, glucose from protein being incorporated into hepatic glycogen stores but not increasing the rate of hepatic glucose release, or because the process of gluconeogenesis from protein occurs over a period of hours and glucose can be disposed of if presented for utilization slowly and evenly over a long time period. Continue reading >>

The Science Behind Fat Metabolism

The Science Behind Fat Metabolism

Per the usual disclaimer, always consult with your doctor before experimenting with your diet (seriously, go see a doctor, get data from blood tests, etc.). Please feel free to comment below if you’re aware of anything that should be updated; I’d appreciate knowing and I’ll update the content quickly. My goal here is to help a scientifically curious audience know the basic story and where to dive in for further study. If I’m successful, the pros will say “duh”, and everyone else will be better informed about how this all works. [UPDATE: based on a ton a helpful feedback and questions on the content below, I’ve written up a separate article summarizing the science behind ketogenic (low-carb) diets. Check it out. Also, the below content has been updated and is still very much applicable to fat metabolism on various kinds of diets. Thanks, everyone!] tl;dr The concentration of glucose in your blood is the critical upstream switch that places your body into a “fat-storing” or “fat-burning” state. The metabolic efficiency of either state — and the time it takes to get into one from the other — depends on a large variety of factors such as food and drink volume and composition, vitamin and mineral balances, stress, hydration, liver and pancreas function, insulin sensitivity, exercise, mental health, and sleep. Carbohydrates you eat, with the exception of indigestible forms like most fibers, eventually become glucose in your blood. Assuming your metabolism is functioning normally, if the switch is on you will store fat. If the switch is off, you will burn fat. Therefore, all things being equal, “diets” are just ways of hacking your body into a sufficiently low-glycemic state to trigger the release of a variety of hormones that, in turn, result in Continue reading >>

Metabolic Functions Of The Liver

Metabolic Functions Of The Liver

Hepatocytes are metabolic overachievers in the body. They play critical roles in synthesizing molecules that are utilized elsewhere to support homeostasis, in converting molecules of one type to another, and in regulating energy balances. If you have taken a course in biochemistry, you probably spent most of that class studying metabolic pathways of the liver. At the risk of damning by faint praise, the major metabolic functions of the liver can be summarized into several major categories: Carbohydrate Metabolism It is critical for all animals to maintain concentrations of glucose in blood within a narrow, normal range. Maintainance of normal blood glucose levels over both short (hours) and long (days to weeks) periods of time is one particularly important function of the liver. Hepatocytes house many different metabolic pathways and employ dozens of enzymes that are alternatively turned on or off depending on whether blood levels of glucose are rising or falling out of the normal range. Two important examples of these abilities are: Excess glucose entering the blood after a meal is rapidly taken up by the liver and sequestered as the large polymer, glycogen (a process called glycogenesis). Later, when blood concentrations of glucose begin to decline, the liver activates other pathways which lead to depolymerization of glycogen (glycogenolysis) and export of glucose back into the blood for transport to all other tissues. When hepatic glycogen reserves become exhaused, as occurs when an animal has not eaten for several hours, do the hepatocytes give up? No! They recognize the problem and activate additional groups of enzymes that begin synthesizing glucose out of such things as amino acids and non-hexose carbohydrates (gluconeogenesis). The ability of the liver to synthe Continue reading >>

An Integrated Analysis Of Glucose, Fat, And Protein Metabolism In Severely Traumatized Patients. Studies In The Basal State And The Response To Total Parenteral Nutrition.

An Integrated Analysis Of Glucose, Fat, And Protein Metabolism In Severely Traumatized Patients. Studies In The Basal State And The Response To Total Parenteral Nutrition.

University Department of Surgery, Auckland Hospital, New Zealand. A series of isotopic infusions were performed in 43 severely ill patients suffering from blunt trauma (mean injury severity score of 31). The patient data have been compared with data obtained from 32 normal volunteers, and in addition the metabolic response of the trauma patient to total nutritional support (TPN) has been assessed. The rate of VO2 was elevated in the trauma patients compared with that of the volunteers (160 mumol/kg/minute vs. 103 mumol/kg/minute). Glucose production was significantly increased in the patients compared with the volunteers (21 +/- 2 mumol/kg/minute vs. 14 +/- 1 mumol/kg/minute), but the trauma patients had an impaired capacity to directly oxidize plasma glucose. The percentage of glucose uptake oxidized in the volunteers was 36 +/- 2%, and the percentage of glucose uptake recycled was 10 +/- 1%. By contrast, in the trauma patients, 23 +/- 4% of the glucose uptake was directly oxidized, and 29 +/- 11% was recycled. The rate of glycerol turnover in the trauma patients (5.3 +/- 0.3 mumol/kg/minute) was significantly elevated compared with the volunteer value (2.2 +/- 0.1 mumol/kg/minute), and the basal rate of fat oxidation was twice as high in the patients as in the volunteers (2 mg/kg/minute vs. 1 mg/kg/minute). The rate of whole body protein catabolism was significantly higher in the patients (5.8 +/- 0.7 g/kg/day vs. 4.3 +/- 0.3 g/kg/day), and as a result, the rate of net protein catabolism was significantly elevated in the patients. The response to TPN (amino acids and a 50:50 mixture of glucose and fat) included an increase in the percentage of glucose uptake oxidized (up to 45 +/- 12%), a decrease in the oxidation of fat (up to 0.8 mg/kg/minute), and a significant in Continue reading >>

Carbohydrate Metabolism

Carbohydrate Metabolism

Carbohydrate metabolism denotes the various biochemical processes responsible for the formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways.[1] Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to store energy absorbed from sunlight internally.[2] When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells.[2] Both animals and plants temporarily store the released energy in the form of high energy molecules, such as ATP, for use in various cellular processes.[3] Although humans consume a variety of carbohydrates, digestion breaks down complex carbohydrates into a few simple monomers for metabolism: glucose, fructose, and galactose.[4] Glucose constitutes about 80% of the products, and is the primary structure that is distributed to cells in the tissues, where it is broken down or stored as glycogen.[3][4] In aerobic respiration, the main form of cellular respiration used by humans, glucose and oxygen are metabolized to release energy, with carbon dioxide and water as byproducts.[2] Most of the fructose and galactose travel to the liver, where they can be converted to glucose.[4] Some simple carbohydrates have their own enzymatic oxidation pathways, as do only a few of the more complex carbohydrates. The disaccharide lactose, for instance, requires the enzyme lactase to be broken into its monosaccharide components, glucose and galactose.[5] Metabolic pathways[edit] Overview of connections between metabolic processes. Glycolysis[edit] Glycolysis is the process of breaking down a glucose molecule into two pyruvate molecules, while storing energy released Continue reading >>

How The Body Uses Carbohydrates, Proteins, And Fats

How The Body Uses Carbohydrates, Proteins, And Fats

How the Body Uses Carbohydrates, Proteins, and Fats The human body is remarkably adept at making do with whatever type of food is available. Our ability to survive on a variety of diets has been a vital adaptation for a species that evolved under conditions where food sources were scarce and unpredictable. Imagine if you had to depend on successfully hunting a woolly mammoth or stumbling upon a berry bush for sustenance! Today, calories are mostly cheap and plentifulperhaps too much so. Understanding what the basic macronutrients have to offer can help us make better choices when it comes to our own diets. From the moment a bite of food enters the mouth, each morsel of nutrition within starts to be broken down for use by the body. So begins the process of metabolism, the series of chemical reactions that transform food into components that can be used for the body's basic processes. Proteins, carbohydrates , and fats move along intersecting sets of metabolic pathways that are unique to each major nutrient. Fundamentallyif all three nutrients are abundant in the dietcarbohydrates and fats will be used primarily for energy while proteins provide the raw materials for making hormones, muscle, and other essential biological equipment. Proteins in food are broken down into pieces (called amino acids) that are then used to build new proteins with specific functions, such as catalyzing chemical reactions, facilitating communication between different cells, or transporting biological molecules from here to there. When there is a shortage of fats or carbohydrates, proteins can also yield energy. Fats typically provide more than half of the body's energy needs. Fat from food is broken down into fatty acids, which can travel in the blood and be captured by hungry cells. Fatty aci Continue reading >>

Do Fat And Protein Turn Into Glucose?

Do Fat And Protein Turn Into Glucose?

Sandi Busch received a Bachelor of Arts in psychology, then pursued training in nursing and nutrition. She taught families to plan and prepare special diets, worked as a therapeutic support specialist, and now writes about her favorite topics nutrition, food, families and parenting for hospitals and trade magazines. Glucose keeps you energized.Photo Credit: Ridofranz/iStock/Getty Images When blood glucose gets low, your energy plummets and you may find it hard to concentrate. Your body can temporarily fill the gap by drawing on glucose stored in your liver, but those supplies are limited. When they run out, your body can produce glucose from fats and proteins. Fats are good for backup energy, but your body doesnt like to divert protein into energy due to its other vital functions. The best way to keep your body fueled is to consume the right amount of fats, proteins and carbs. Carbohydrates consist of molecules of sugar, which your body digests into glucose and uses for energy. When youre short on carbs, glucose can be created from fat and protein in a process called gluconeogenesis. Gluconeogenesis takes place mostly in your liver, which also has the job of maintaining a steady amount of glucose in your blood. If blood sugar drops too low due to problems in the liver, your kidneys can boost blood sugar by converting the amino acid glutamine into glucose. The saturated and unsaturated fats in your diet consist of two substances bound together: glycerol and fatty acids. During digestion, they're separated, and each one follows a different path. Glycerol is easily metabolized and used to make glucose. Fatty acids are carried to tissues throughout your body, where they help build cell walls, produce hormones and digest fat-soluble nutrients. Fatty acids can be converted i Continue reading >>

Metabolic Pathways

Metabolic Pathways

There are three groups of molecules that form the core building blocks and fuel substrates in the body: carbohydrates (glucose and other sugars); proteins and their constituent amino acids; and lipids and their constituent fatty acids. The biochemical processes that allow these molecules to be synthesized and stored (anabolism) or broken down to generate energy (catabolism) are referred to as metabolic pathways. Glucose metabolism involves the anabolic pathways of gluconeogenesis and glycogenesis, and the catabolic pathways of glycogenolysis and glycolysis. Lipid metabolism involves the anabolic pathways of fatty acid synthesis and lipogenesis and the catabolic pathways of lipolysis and fatty acid oxidation. Protein metabolism involves the anabolic pathways of amino acid synthesis and protein synthesis and the catabolic pathways of proteolysis and amino acid oxidation. Under conditions when glucose levels inside the cell are low (such as fasting, sustained exercise, starvation or diabetes), lipid and protein catabolism includes the synthesis (ketogenesis) and utilization (ketolysis) of ketone bodies. The end products of glycolysis, fatty acid oxidation, amino acid oxidation and ketone body degradation can be oxidised to carbon dioxide and water via the sequential actions of the tricarboxylic acid cycle and oxidative phosphorylation, generating many molecules of the high energy substrate adenosine triphosphate (ATP). Interplay between metabolic pathways The interplay between glucose metabolism, lipid metabolism, ketone body metabolism and protein and amino acid metabolism is summarized in Figure 1. Amino acids can be a source of glucose synthesis as well as energy production and excess glucose that is not required for energy production can be stored as glycogen or metabo Continue reading >>

Protein Controversies In Diabetes

Protein Controversies In Diabetes

Diabetes SpectrumVolume 13 Number 3, 2000, Page 132 Marion J. Franz, MS, RD, LD, CDE In Brief People with diabetes are frequently given advice about protein that has no scientific basis. In addition, although weight is lost when individuals follow a low-carbohydrate, high-protein diet, there is no evidence that such diets are followed long-term or that there is less recidivism than with other low-calorie diets. People with type 1 or type 2 diabetes who are in poor metabolic control may have increased protein requirements. However, the usual amount of protein consumed by people with diabetes adequately compensates for the increased protein catabolism. People with diabetes need adequate and accurate information about protein on which to base their food decisions. In the United States, ~16% of the average adult consumption of calories is from protein, and this has varied little from 1909 to the present.1 Protein intake is also fairly consistent across all ages from infancy to older age. A daily intake of 2,500 calories contributes ~100 g of protein—about twice what is needed to replace protein lost on a daily basis. Excess amino acids must be converted into other storage products or oxidized as fuel. Therefore, in theory, the excess ingested protein could, through the process of gluconeogenesis, produce glucose. This would mean that 100 g of protein could produce ~50 g of glucose. This has been the basis of the statement that if about half of ingested protein is converted to glucose, protein will have one-half the effect of carbohydrate on blood glucose levels. However, this belief has been challenged.2-4 Protein controversies exist either because research has not provided conclusive answers or because professionals are not aware of the research. This article will review Continue reading >>

The Catabolism Of Fats And Proteins For Energy

The Catabolism Of Fats And Proteins For Energy

The Catabolism of Fats and Proteins for Energy Before we get into anything, what does the word catabolism mean? When we went over catabolic and anabolic reactions , we said that catabolic reactions are the ones that break apart molecules. To remember what catabolic means, think of a CATastrophe where things are falling apart and breaking apart. You could also remember cats that tear apart your furniture. In order to make ATP for energy, the body breaks down mostly carbs, some fats and very small amounts of protein. Carbs are the go-to food, the favorite food that cells use to make ATP but now were going to see how our cells use fats and proteins for energy. What were going to find is that they are ALL going to be turned into sugars (acetyl) as this picture below shows. First lets do a quick review of things you already know because it is assumed you learned cell respiration already and how glucose levels are regulated in your blood ! Glucose can be stored as glycogen through a process known as glycogenesis. The hormone that promotes this process is insulin. Then when glycogen needs to be broken down, the hormone glucagon, promotes glycogenolysis (Glycogen-o-lysis) to break apart the glycogen and increase the blood sugar level. Glucose breaks down to form phosphoglycerate (PGAL) and then pyruvic acid. What do we call this process of splitting glucose into two pyruvic sugars? Thats glycolysis (glyco=glucose, and -lysis is to break down). When theres not enough oxygen, pyruvic acid is converted into lactic acid. When oxygen becomes available, lactic acid is converted back to pyruvic acid. Remember that this all occurs in the cytoplasm. The pyruvates are then, aerobically, broken apart in the mitochondria into Acetyl-CoA. The acetyl sugars are put into the Krebs citric aci Continue reading >>

Insulin And Protein Metabolism

Insulin And Protein Metabolism

The present status of protein synthesis within cells has been outlined. Protein is formed in the absence of insulin; the net formation of protein is accelerated by insulin. The effects of insulin on protein metabolism take place independently of the transport of glucose or amino acids into the cell; of glycogen synthesis; and of the stimulation of high energy phosphate formation. In the case of protein metabolism, as in certain studies on the pathways of glucose and fat metabolism, these observations reveal striking intracellular effects of insulin in many tissues. Within most tissues the effect of insulin appears to find expression predominantly at the microsomal level. Incidentally, other hormones which affect protein metabolism such as growth or sex hormones appear to act at the microsomes. The fact that insulin exerts effects on protein metabolism at other intracellular sites as well as the above independent effects leads one to agree that its action consists of a stimulation of multiple, seemingly unrelated, metabolic events. The fact that an immediate effect of insulin on protein synthesis is independent of the immediate need for extracellular glucose or amino acids does not mean that the sustained functioning of cells is likewise independent. The biochemist is fully aware of metabolic defects in diabetes which are not altered by insulin in vitro, but which demand varying periods of pretreatment of the animal. It is also known that in diabetes some proteins (enzymes) may be deficient while others may be produced in excess in the absence of insulin. It is suggested that the physician desires at least two kinds of relation between these fundamental studies and his patients. One is the possible relation of a deficiency of insulin action to pathological processes in t Continue reading >>

Carbohydrates, Proteins, Fats, And Blood Sugar

Carbohydrates, Proteins, Fats, And Blood Sugar

The body uses three main nutrients to function-carbohydrate, protein, and fat. These nutrients are digested into simpler compounds. Carbohydrates are used for energy (glucose). Fats are used for energy after they are broken into fatty acids. Protein can also be used for energy, but the first job is to help with making hormones, muscle, and other proteins. Nutrients needed by the body and what they are used for Type of nutrient Where it is found How it is used Carbohydrate (starches and sugars) Breads Grains Fruits Vegetables Milk and yogurt Foods with sugar Broken down into glucose, used to supply energy to cells. Extra is stored in the liver. Protein Meat Seafood Legumes Nuts and seeds Eggs Milk products Vegetables Broken down into amino acids, used to build muscle and to make other proteins that are essential for the body to function. ADVERTISINGinRead invented by Teads Fat Oils Butter Egg yolks Animal products Broken down into fatty acids to make cell linings and hormones. Extra is stored in fat cells. After a meal, the blood sugar (glucose) level rises as carbohydrate is digested. This signals the beta cells of the pancreas to release insulin into the bloodstream. Insulin helps glucose enter the body's cells to be used for energy. If all the glucose is not needed for energy, some of it is stored in fat cells and in the liver as glycogen. As sugar moves from the blood to the cells, the blood glucose level returns to a normal between-meal range. Several hormones and processes help regulate the blood sugar level and keep it within a certain range (70 mg/dL to 120 mg/dL). When the blood sugar level falls below that range, which may happen between meals, the body has at least three ways of reacting: Cells in the pancreas can release glucagon, a hormone that signals the b Continue reading >>

More in ketosis