diabetestalk.net

Glucose Can Be Used To Make Fatty Acids True Or False

Share on facebook

Fatty acid oxidation lecture - This biochemistry lecture explains the process of beta oxidation of fatty acids. This lectures explains the beta oxidation process of fatty acids step by step. beta-oxidationis the catabolic process by whichfatty acidmolecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citricacidcycle, and NADH and FADH2, which are co-enzymes used in the electron transport to generate ATP molecules. Beta oxidationof fatty acids takes place in the mitochondrial matrix for the most part. However, fatty acids have to be activated for degradation by coenzyme A by forming a fatty acyl-CoA thioester. For short and medium length fatty acids, they undergo this reaction in the mitochondria. When pancreatic lipase acts on the small lipid droplets, it breaks them down into freefatty acidsand monoglycerides, which are the two digestive products of lipids. These small units are able to pass through the intestinal mucosa and enter the epithelial cells of the small intestine. Where are fatty acids stored in the body? Fatty acidsare released, between meals, from the fat depots in adipose tissue, where t

Metabolism Of Fatty Acids That Results In The

98) The amine group removed from an amino acid must be converted to ________ before being eliminated from the human body.99) Insulin levels in the blood are elevated in response to which of the following?100) Which of the following is not an action of insulin on liver cells?3.2 True/False Questions1) Chemical reactions are only able to occur in one direction.Answer: FALSEDiff: 3 Page Ref: 572) Phosphorylation reactions are specific examples of a condensation reaction.Answer: FALSEDiff: 4 Page Ref: 583) Sucrose is synthesized from the condensation of fructose and glucose.Answer: TRUEDiff: 4 Page Ref: 584) The following reaction is an example of an oxidation: FAD + 2 H+ FADH2Answer: FALSEDiff: 5 Page Ref: 5921 5) According to the first law of thermodynamics, energy cannot be created or destroyed.Answer: TRUEDiff: 4 Page Ref: 596) Potential energy describes the energy possessed by an object in motion.Answer: FALSEDiff: 4 Page Ref: 607) A reaction is at equilibrium when the rate of the forward and reverse reactions are equal.Answer: TRUEDiff: 4 Page Ref: 618) Energy-releasing reactions occur spontaneously.Answer: TRUEDiff: 4 Page Ref: 619) Energy-requiring reactions will always procee Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

Distance education Thanks to YouTube For this best platform to shearing our videos, This video is for education purpose. Namaskar Dosto...MAIN Nitesh jha aapka bahut bahut swagat karta hu Technitesh channel pe.. ----------- -------------------------------- viral video :- https://goo.gl/4Dswsp https://goo.gl/MJwcAV Important videos :- https://goo.gl/Lumius https://goo.gl/bdoQ9W Dosto Aaj ke samay me students ka distance education ke taraf jayada jhukaw ho raha hai, Students chahte hai ki ghar baithe baithe hi padhai kar le ya fir Job ke sath padhai kar lr, Lek8n fir bhi kuch students ke mab me cobfusion rah jati hai distance educatuob ko leke, To aaj ke is video me main isi ke baare me baat jarne wala hu ji Distance education kya hai.. Distance Education. Padhaku umeed hai k aapko video pasand aayegi... thanks Nitesh jha ------------------------------------------------------------------ :- Follow and Like my Page on Facebook: https://www.facebook.com/TechniteshG/ Follow me on google plus: https://plus.google.com/u/0/103725196... Follow me on twitter: https://twitter.com/Technitesh1 Follow me on Instagram: https://instagram.com/TechniteshG Please Dont Forget to Like, Share &

Science At A Distance

Read each of the Quick Questions below and write down your answer. When you have finished the test, click on the ANSWERS button and see how well you have done. 1) Macromolecules are the parts used to make biopolymers. (True / False)? 2) Monomers are simple molecules that can be joined together in longer chains or strings. (True / False)? 3) Covalent bonds hold monomers together in biopolymers. (True / False)? 4) In heteropolymers all the monomer units are exactly alike. (True / False)? 5) As two monomer units are joined together a molecule of water is also formed. (True / False)? 6) Lipids and some polysaccharides are examples of homopolymers. (True / False)? 7) Proteins and nucleic acids are examples of homopolymers. (True / False)? 8) Hydrocarbons are found in waxes and fatty acids but not in lipids. (True / False)? 9) Hydrocarbons are found as a component in lipids. (True / False)? 10) All fatty acids have a carboxylic acid reactive group at one end of the hydrocarbon chain. (True / False)? 11) Hydrocarbons are always hydrophilic. (True / False)? 12) Carboxylic acid groups are always hydrophilic. (True / False)? 13) A triglyceride is an example of a neutral lipid. (True / False Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

FREE Nursing School Cheat Sheets at: http://www.NRSNG.com Check out The Ultimate Guide to the Must Have nursing school supplies: https://www.nrsng.com/nursing-school-... Tired of professors who don't seem to care, confusing lectures, and taking endless NCLEX® review questions? . . . Welcome to NRSNG.com | Where Nurses Learn . . . Prepare to DEMOLISH the NCLEX. Follow Us::::::::::::::::::::::::: Instagram: https://www.instagram.com/nrsng/ Facebook: https://www.facebook.com/nrsng Twitter: https://twitter.com/nrsngcom Snapchat: @nrsngcom Resources::::::::::::::::::::::: Blog: http://www.NRSNG.com FREE Cheat Sheets: http://www.nrsng.com/freebies Books: http://www.NursingStudentBooks.com Nursing Student Toolbox: http://www.NRSNG.com/toolbox MedMaster Course: http://www.MedMasterCourse.com Visit us at http://www.nrsng.com/medical-informat... for disclaimer information. NCLEX®, NCLEX-RN® are registered trademarks of the National Council of State Boards of Nursing, INC. and hold no affiliation with NRSNG.

Ch 25 Flashcards | Quizlet

a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. b. is the conversion of two molecules of glucose into one molecule of pyruvic acid. c. concludes with formation of acetyl coenzyme A. d. generates a usable total of 4 ATP molecules. e. requires oxygen for efficient conversion of glucose into pyruvic acid. a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. a. is formed through oxidation of pyruvic acid. b. formation requires pyruvate dehydrogenase. ATP is produced through chemiosmosis in the cytosol of the cell, and may occur under aerobic or anaerobic conditions. Which of the following places the events of glucose catabolism in the correct order? a. glycolysis, formation of acetyl coA, Krebs cycle, electron transport chain reactions b. glycolysis, Krebs cycle, formation of acetyl coA, electron transport chain reactions c. glycolysis, anaerobic respiration, Krebs cycle, electron transport chain reactions d. glycolysis, Krebs cycle, anaerobic respiration, electron transport chain reactions e. formation of acetyl coA, glycolysis, electron transport chain reactions a. glycolysis, formation of acetyl coA, Krebs cycle, el Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Glucose Can Be Used To Make Fatty Acids True Or False

    The Body’s Fuel Sources Our ability to run, bicycle, ski, swim, and row hinges on the capacity of the body to extract energy from ingested food. As potential fuel sources, the carbohydrate, fat, and protein in the foods that you eat follow different metabolic paths in the body, but they all ultimately yield water, carbon dioxide, and a chemical energy called adenosine triphosphate (ATP). Think of ATP molecules as high-energy compounds or batter ...

    ketosis Nov 20, 2018
  • The Body Can Make Glucose From Fatty Acids True Or False

    Mary Stangler Center for Academic Success This review is meant to highlight basic concepts from Chapter 8. It does not cover all concepts presented by your instructor. Refer back to your notes, unit objectives, labs, handouts, etc. to further prepare for your exam. 1. Define cellular respiration as it relates to its purpose. 2. Write the equation that represents cellular respiration. 3. List the 4 stages of cellular respiration. Fill in the blank ...

    ketosis Apr 1, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    In the last section, we learned how fat in the body is broken down and rebuilt into chylomicrons, which enter the bloodstream by way of the lymphatic system. Chylomicrons do not last long in the bloodstream -- only about eight minutes -- because enzymes called lipoprotein lipases break the fats into fatty acids. Lipoprotein lipases are found in the walls of blood vessels in fat tissue, muscle tissue and heart muscle. Insulin When you eat a candy ...

    ketosis Apr 1, 2018
  • Fatty Acids Can Be Converted To Glucose True Or False

    a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. b. is the conversion of two molecules of glucose into one molecule of pyruvic acid. c. concludes with formation of acetyl coenzyme A. d. generates a usable total of 4 ATP molecules. e. requires oxygen for efficient conversion of glucose into pyruvic acid. a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. a. is formed through oxid ...

    ketosis Nov 20, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    making proteins from RNA; tRNA translates the mRNA code into a sequence of amino acids. something wrong in a protein, like an enzyme the process whereby the information coded in a gene is used to produce a protein, and is based on the need for the given protein. the essential amino acid that is available in the lowest concentration in relation to the body's need. -this limits the body's ability to synthesize a protein Name some nonprotein molecu ...

    ketosis Apr 2, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids.

    Front Back .Wirisformula{ margin:0 !important; padding:0 !important; vertical-align:top !important;} Metabolism The sum total of all the chemcial reactions that go on in living cells. Energy metabolism includes all the reactions by which the body obtains and spends energy from food. Example: Nutrients provide the body with FUEL and follows them through a series of reactions that release energy from their chemical bonds. As the bonds break, they r ...

    ketosis Apr 1, 2018

Popular Articles

More in ketosis