diabetestalk.net

Fatty Acids Can Be Converted To Glucose True Or False

Share on facebook

FREE Nursing School Cheat Sheets at: http://www.NRSNG.com Check out The Ultimate Guide to the Must Have nursing school supplies: https://www.nrsng.com/nursing-school-... Tired of professors who don't seem to care, confusing lectures, and taking endless NCLEX® review questions? . . . Welcome to NRSNG.com | Where Nurses Learn . . . Prepare to DEMOLISH the NCLEX. Follow Us::::::::::::::::::::::::: Instagram: https://www.instagram.com/nrsng/ Facebook: https://www.facebook.com/nrsng Twitter: https://twitter.com/nrsngcom Snapchat: @nrsngcom Resources::::::::::::::::::::::: Blog: http://www.NRSNG.com FREE Cheat Sheets: http://www.nrsng.com/freebies Books: http://www.NursingStudentBooks.com Nursing Student Toolbox: http://www.NRSNG.com/toolbox MedMaster Course: http://www.MedMasterCourse.com Visit us at http://www.nrsng.com/medical-informat... for disclaimer information. NCLEX®, NCLEX-RN® are registered trademarks of the National Council of State Boards of Nursing, INC. and hold no affiliation with NRSNG.

Ch 25 Flashcards | Quizlet

a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. b. is the conversion of two molecules of glucose into one molecule of pyruvic acid. c. concludes with formation of acetyl coenzyme A. d. generates a usable total of 4 ATP molecules. e. requires oxygen for efficient conversion of glucose into pyruvic acid. a. is the conversion of one molecule of glucose into two molecules of pyruvic acid. a. is formed through oxidation of pyruvic acid. b. formation requires pyruvate dehydrogenase. ATP is produced through chemiosmosis in the cytosol of the cell, and may occur under aerobic or anaerobic conditions. Which of the following places the events of glucose catabolism in the correct order? a. glycolysis, formation of acetyl coA, Krebs cycle, electron transport chain reactions b. glycolysis, Krebs cycle, formation of acetyl coA, electron transport chain reactions c. glycolysis, anaerobic respiration, Krebs cycle, electron transport chain reactions d. glycolysis, Krebs cycle, anaerobic respiration, electron transport chain reactions e. formation of acetyl coA, glycolysis, electron transport chain reactions a. glycolysis, formation of acetyl coA, Krebs cycle, el Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

What is GLUCONEOGENESIS? What does GLUCONEOGENESIS mean? GLUCONEOGENESIS meaning - GLUCONEOGENESIS definition - GLUCONEOGENESIS explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis) and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in t

In Silico Evidence For Gluconeogenesis From Fatty Acids In Humans

In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans 2Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology Hans Knll Institute, Jena, Germany 3Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany 4Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrcke, Nuthetal, Germany 1Department of Bioinformatics, School of Biology and Pharmaceutics, Friedrich Schiller University of Jena, Jena, Germany 2Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology Hans Knll Institute, Jena, Germany 3Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany 4Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrcke, Nuthetal, Germany Stanford University, United States of America Conceived and designed the experiments: CK RG MR SS. Analyzed the data: CK LFdF SW. Wrote the paper: CK LFdF SS. Received 2011 Jan 14; Accepted 2011 May 24. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestric Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

What is CLINICAL PATHWAY? What does CLINICAL PATHWAY mean? CLINICAL PATHWAY meaning - CLINICAL PATHWAY definition - CLINICAL PATHWAY explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... A clinical pathway, also known as care pathway, integrated care pathway, critical pathway, or care map, is one of the main tools used to manage the quality in healthcare concerning the standardisation of care processes. It has been shown that their implementation reduces the variability in clinical practice and improves outcomes. Clinical pathways aim to promote organised and efficient patient care based on evidence-based medicine, and aim to optimise outcomes in settings such as acute care and home care. A single clinical pathway may refer to multiple clinical guidelines on several topics in a well specified context. A clinical pathway is a multidisciplinary management tool based on evidence-based practice for a specific group of patients with a predictable clinical course, in which the different tasks (interventions) by the professionals involved in the pa

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can sugars be produced from fatty acids? A test case for pathway analysis tools Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Glucose Can Be Used To Make Fatty Acids True Or False

    Most cells use glucose for ATP synthesis, but there are other fuel molecules equally important for maintaining the body's equilibrium or homeostasis. Indeed, although the oxidation pathways of fatty acids, amino acids, and glucose begin differently, these mechanisms ultimately converge onto a common pathway, the TCA cycle, occurring within the mitochondria (Figure 1). As mentioned earlier, the ATP yield obtained from lipid oxidation is over twice ...

    ketosis Nov 20, 2018
  • Fatty Acids Can Be Converted To Glucose True Or False

    Why do we humans eat food? What do we need it for, and get out of it? W O R K T O G E T H E R Cellular respiration is an: Endergonic process Exergonic process Exergonic OR endergonic process, depending on the organism. In which organelle does cellular respiration occur? Chloroplast Mitochondria Depends on whether it’s a plant or an animal. What is “food†(i.e. source of metabolic energy) for plants? Sunlight Sugar Water Oxygen Mi ...

    ketosis Nov 20, 2018
  • Can Fatty Acids Can Be Converted To Glucose?

    Rudeness or trolling will not be tolerated. Be nice to each other, hating on other users won't help you get extra points on the MCAT, so why do it? Do not post any question information from any resource in the title of your post. These are considered spoilers and should be marked as such. For an example format for submitting pictures of questions from practice material click here Do not link to content that infringes on copyright laws (MCAT torr ...

    ketosis Apr 22, 2018
  • The Body Can Make Glucose From Fatty Acids True Or False

    Sort what is the regulation of the citric acid cycle The citric acid cycle is regulated mostly by substrate availability, product inhibition and by some cycle intermediates. • pyruvate dehydrogenase: is inhibited by its products, acetyl-CoA and NADH • citrate synthase: is inhibited by its product, citrate. It is also inhibited by NADH and succinyl-CoA (which signal the abundance of citric acid cycle intermediates). • isocitrate dehydrogenas ...

    ketosis Apr 1, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    Table of Contents It can be quite correctly argued that life exists on Earth because of the abundant liquid water. Other planets have water, but they either have it as a gas (Venus) or ice (Mars). This relationship is shown in Figure 1. Recent studies of Mars reveal the presence sometime in the past of running fluid, possibly water. The chemical nature of water is thus one we must examine as it permeates living systems: water is a universal solve ...

    ketosis Apr 1, 2018
  • All Amino Acids Can Be Used To Produce Glucose True Or False

    Which of the following statements about essential amino acids is FALSE? A.Without essential amino acids, we lose our ability to make proteins and other nitrogen-containing compounds we need. B.Nine of the 20 amino acids in the body are classified as essential. C.Our bodies can synthesize essential amino acids in sufficient amounts, so we do not need to consume them in our diet. D.Our bodies cannot synthesize essential amino acids in sufficient a ...

    ketosis Apr 30, 2018

Popular Articles

More in ketosis