diabetestalk.net

Fat To Glucose

Can Fats Be Turned Into Glycogen For Muscle?

Can Fats Be Turned Into Glycogen For Muscle?

The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

The Science Behind Fat Metabolism

The Science Behind Fat Metabolism

Per the usual disclaimer, always consult with your doctor before experimenting with your diet (seriously, go see a doctor, get data from blood tests, etc.). Please feel free to comment below if you’re aware of anything that should be updated; I’d appreciate knowing and I’ll update the content quickly. My goal here is to help a scientifically curious audience know the basic story and where to dive in for further study. If I’m successful, the pros will say “duh”, and everyone else will be better informed about how this all works. [UPDATE: based on a ton a helpful feedback and questions on the content below, I’ve written up a separate article summarizing the science behind ketogenic (low-carb) diets. Check it out. Also, the below content has been updated and is still very much applicable to fat metabolism on various kinds of diets. Thanks, everyone!] tl;dr The concentration of glucose in your blood is the critical upstream switch that places your body into a “fat-storing” or “fat-burning” state. The metabolic efficiency of either state — and the time it takes to get into one from the other — depends on a large variety of factors such as food and drink volume and composition, vitamin and mineral balances, stress, hydration, liver and pancreas function, insulin sensitivity, exercise, mental health, and sleep. Carbohydrates you eat, with the exception of indigestible forms like most fibers, eventually become glucose in your blood. Assuming your metabolism is functioning normally, if the switch is on you will store fat. If the switch is off, you will burn fat. Therefore, all things being equal, “diets” are just ways of hacking your body into a sufficiently low-glycemic state to trigger the release of a variety of hormones that, in turn, result in Continue reading >>

Relationship Of Dietary Fat To Glucose Metabolism - Sciencedirect

Relationship Of Dietary Fat To Glucose Metabolism - Sciencedirect

Volume 150, Issue 2 , June 2000, Pages 227-243 Relationship of dietary fat to glucose metabolism Author links open overlay panel Alice HLichtensteina Get rights and content The relationship between dietary fat and glucose metabolism has been recognized for at least 60 years. In experimental animals, high fat diets result in impaired glucose tolerance. This impairment is associated with decreased basal and insulin-stimulated glucose metabolism. Impaired insulin binding and/or glucose transporters has been related to changes in the fatty acid composition of the membrane induced by dietary fat modification. In humans, high-fat diets, independent of fatty acid profile, have been reported to result in decreased insulin sensitivity. Saturated fat, relative to monounsaturated and polyunsaturated fat, appears to be more deleterious with respect to fat-induced insulin insensitivity. Some of the adverse effects induced by fat feeding can be ameliorated with omega-3 fatty acid. Epidemiological data in humans suggest that subjects with higher intakes of fat are more prone to develop disturbances in glucose metabolism, type 2 diabetes or impaired glucose tolerance, than subjects with lower intakes of fat. Inconsistencies in the data may be attributable to clustering of high intakes of dietary fat (especially animal fat) with obesity and inactivity. Metabolic studies suggest that higher-fat diets containing a higher proportion of unsaturated fat result in better measures of glucose metabolism than high-carbohydrate diet. Clearly, the area of dietary fat and glucose metabolism has yet to be fully elucidated. Continue reading >>

Does Fat Convert To Glucose In The Body?

Does Fat Convert To Glucose In The Body?

Your body is an amazing machine that is able to extract energy from just about anything you eat. While glucose is your body's preferred energy source, you can't convert fat into glucose for energy; instead, fatty acids or ketones are used to supply your body with energy from fat. Video of the Day Fat is a concentrated source of energy, and it generally supplies about half the energy you burn daily. During digestion and metabolism, the fat in the food you eat is broken down into fatty acids and glycerol, which are emulsified and absorbed into your blood stream. While some tissues -- including your muscles -- can use fatty acids for energy, your brain can't convert fatty acids to fuel. If you eat more fat than your body needs, the extra is stored in fat cells for later use. Fat has more than twice as many calories per gram as carbs and protein, which makes it an efficient form of stored energy. It would take more than 20 pounds of glycogen -- a type of carbohydrate used for fuel -- to store the same amount of energy in just 10 pounds of fat. Your Body Makes Glucose From Carbs Almost all the glucose in your body originated from carbohydrates, which come from the fruit, vegetables, grains and milk in your diet. When you eat these carb-containing foods, your digestive system breaks them down into glucose, which is then used for energy by your cells. Any excess glucose is converted into glycogen, then stored in your muscles and liver for later use. Once you can't store any more glucose or glycogen, your body stores any leftover carbs as fat. Glucose is your brain's preferred source of energy. However, when glucose is in short supply, your brain can use ketones -- which are derived from fat -- for fuel. Since your brain accounts for approximately one-fifth of your daily calori Continue reading >>

Relationship Of Dietary Fat To Glucose Metabolism

Relationship Of Dietary Fat To Glucose Metabolism

The relationship between dietary fat and glucose metabolism has been recognized for at least 60 years. In experimental animals, high fat diets result in impaired glucose tolerance. This impairment is associated with decreased basal and insulin-stimulated glucose metabolism. Impaired insulin binding and/or glucose transporters has been related to changes in the fatty acid composition of the membrane induced by dietary fat modification. In humans, high-fat diets, independent of fatty acid profile, have been reported to result in decreased insulin sensitivity. Saturated fat, relative to monounsaturated and polyunsaturated fat, appears to be more deleterious with respect to fat-induced insulin insensitivity. Some of the adverse effects induced by fat feeding can be ameliorated with omega-3 fatty acid. Epidemiological data in humans suggest that subjects with higher intakes of fat are more prone to develop disturbances in glucose metabolism, type 2 diabetes or impaired glucose tolerance, than subjects with lower intakes of fat. Inconsistencies in the data may be attributable to clustering of high intakes of dietary fat (especially animal fat) with obesity and inactivity. Metabolic studies suggest that higher-fat diets containing a higher proportion of unsaturated fat result in better measures of glucose metabolism than high-carbohydrate diet. Clearly, the area of dietary fat and glucose metabolism has yet to be fully elucidated. Do you want to read the rest of this article? ... The increase in blood glucose when feeding piglets with higher-dose fat diets or lipase supplemented diets was consistent with expectations. Fat metabolism affects glucose metabolism and insulin levels in animals ( Lichtenstein and Schwab 2000). Animals fed high-fat diet exhibited a decrease of activ Continue reading >>

How Are Carbohydrates Converted Into Fat Deposits?

How Are Carbohydrates Converted Into Fat Deposits?

How are carbohydrates converted into fat deposits? There are two ways that carbohydrates and body fat interact. One is directly by turning into body fat, and the other is via insulin. Turning into body fat is like adding fat into the fat cells, whereas carbohydrates spiking insulin does not add anything to fat cells per se, but hinders the release. The former is like a + equation, where the latter is a double negative which results in something that seems positive. There is a process called de novo lipogenesis (literally: Creation of fat from non-fat sources) that can occur in the body. This process turns glucose into lipids, which are then stored as body fat. This process is normally quite inefficient in the body [1] , which suggests that carbohydrates cannot be stored as fat to a high degree. The process can be upregulated (enhanced) if dietary fat comprised almost none of the diet (lesser than 10%, as a rough estimate), if carbohydrate intake is excessively high for a period of a few days, or if one follows an obesogenic diet (diet that is likely to make you fat) for a prolonged period of time. [1] [2] [3] Carbohydrates spike insulin , which is a hormone that mediates glucose metabolism. Insulin is not good or bad, insulin is insulin. It can be thought of as a lever that switches the body from fat burning mode into carbohydrate burning mode. This allows carbohydrates (and glycogen) to be burnt at a greater rate, but directly reduces the ability of fat to be lost. Overall metabolic rate (calories burnt over the course of a day) does not change significantly, just where the calories come from. When insulin is spiked in presence of ingested dietary fat, the dietary fat can go into body fat stores and not be released since glucose from glycogen is being used in place of Continue reading >>

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. In fact this is so important that it should be written in italics and have its own bold heading! But it’s not quite right. Making glucose from fatty acids is low-paying work. It’s not the type of alchemy that would allow us to build imperial palaces out of sugar cubes or offer hourly sweet sacrifices upon the altar of the glorious god of glucose (God forbid!). But it can be done, and it’ll help pay the bills when times are tight. All Aboard the Acetyl CoA! When we’re running primarily on fatty acids, our livers break the bulk of these fatty acids down into two-carbon units called acetate. When acetate hangs out all by its lonesome like it does in a bottle of vinegar, it’s called acetic acid and it gives vinegar its characteristic smell. Our livers aren’t bottles of vinegar, however, and they do things a bit differently. They have a little shuttle called coenzyme A, or “CoA” for short, that carries acetate wherever it needs to go. When the acetate passenger is loaded onto the CoA shuttle, we refer to the whole shebang as acetyl CoA. As acetyl CoA moves its caboose along the biochemical railway, it eventually reaches a crossroads where it has to decide whether to enter the Land of Ketogenesis or traverse the TCA cycle. The Land of Ketogenesis is a quite magical place to which we’ll return in a few moments, but n Continue reading >>

Relationship Of Dietary Fat To Glucose Metabolism.

Relationship Of Dietary Fat To Glucose Metabolism.

Relationship of dietary fat to glucose metabolism. Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St., 02111, Boston, MA, USA. [email protected] The relationship between dietary fat and glucose metabolism has been recognized for at least 60 years. In experimental animals, high fat diets result in impaired glucose tolerance. This impairment is associated with decreased basal and insulin-stimulated glucose metabolism. Impaired insulin binding and/or glucose transporters has been related to changes in the fatty acid composition of the membrane induced by dietary fat modification. In humans, high-fat diets, independent of fatty acid profile, have been reported to result in decreased insulin sensitivity. Saturated fat, relative to monounsaturated and polyunsaturated fat, appears to be more deleterious with respect to fat-induced insulin insensitivity. Some of the adverse effects induced by fat feeding can be ameliorated with omega-3 fatty acid. Epidemiological data in humans suggest that subjects with higher intakes of fat are more prone to develop disturbances in glucose metabolism, type 2 diabetes or impaired glucose tolerance, than subjects with lower intakes of fat. Inconsistencies in the data may be attributable to clustering of high intakes of dietary fat (especially animal fat) with obesity and inactivity. Metabolic studies suggest that higher-fat diets containing a higher proportion of unsaturated fat result in better measures of glucose metabolism than high-carbohydrate diet. Clearly, the area of dietary fat and glucose metabolism has yet to be fully elucidated. Continue reading >>

Fat For Fuel: Why Dietary Fat, Not Glucose, Is The Preferred Body Fuel

Fat For Fuel: Why Dietary Fat, Not Glucose, Is The Preferred Body Fuel

Contrary to popular belief, glucose is NOT the preferred fuel of human metabolism; the fact is that burning dietary fat for fuel may actually be the key to optimal health Carbohydrate intake is the primary factor that determines your body's fat ratio, and processed grains and sugars (particularly fructose) are the primary culprits behind our skyrocketing obesity and diabetes rates According to experts, carbs should make up only 20 percent of your diet, while 50-70 percent of your diet should be healthy fats. Fat is far more satiating than carbs, so if you have cut down on carbs and feel ravenous, this is a sign that you need more healthy fat to burn for fuel By Dr. Mercola While we may consider ourselves to be at the pinnacle of human development, our modern food manufacturing processes have utterly failed at improving health and increasing longevity. During the Paleolithic period, many thousands of years ago, our ancestors ate primarily vegetables, fruit, nuts, roots and meat—and a wide variety of it. This diet was high in fats and protein, and low in grain- and sugar-derived carbohydrates. The average person's diet today, on the other hand, is the complete opposite, and the average person's health is a testament of what happens when you adhere to a faulty diet. Humans today suffer more chronic and debilitating diseases than ever before. And there can be little doubt that our food choices play a major role in this development. Quite simply, you were not designed to eat large amounts of refined sugar, high fructose corn syrup, cereal, bread, potatoes and pasteurized milk products. As Mark Sisson states in the featured article:1 "If you want to live a better life and eat the best foods nature provided for health and fitness, then it's time to ditch the old paradigms an Continue reading >>

How Fat Cells Work

How Fat Cells Work

In the last section, we learned how fat in the body is broken down and rebuilt into chylomicrons, which enter the bloodstream by way of the lymphatic system. Chylomicrons do not last long in the bloodstream -- only about eight minutes -- because enzymes called lipoprotein lipases break the fats into fatty acids. Lipoprotein lipases are found in the walls of blood vessels in fat tissue, muscle tissue and heart muscle. Insulin When you eat a candy bar or a meal, the presence of glucose, amino acids or fatty acids in the intestine stimulates the pancreas to secrete a hormone called insulin. Insulin acts on many cells in your body, especially those in the liver, muscle and fat tissue. Insulin tells the cells to do the following: The activity of lipoprotein lipases depends upon the levels of insulin in the body. If insulin is high, then the lipases are highly active; if insulin is low, the lipases are inactive. The fatty acids are then absorbed from the blood into fat cells, muscle cells and liver cells. In these cells, under stimulation by insulin, fatty acids are made into fat molecules and stored as fat droplets. It is also possible for fat cells to take up glucose and amino acids, which have been absorbed into the bloodstream after a meal, and convert those into fat molecules. The conversion of carbohydrates or protein into fat is 10 times less efficient than simply storing fat in a fat cell, but the body can do it. If you have 100 extra calories in fat (about 11 grams) floating in your bloodstream, fat cells can store it using only 2.5 calories of energy. On the other hand, if you have 100 extra calories in glucose (about 25 grams) floating in your bloodstream, it takes 23 calories of energy to convert the glucose into fat and then store it. Given a choice, a fat cell w Continue reading >>

Evolving Health: Why Can't We Convert Fat To Glucose?

Evolving Health: Why Can't We Convert Fat To Glucose?

As evident by many sugar-laden soda pop "potbellies" of North America, lipogenesis can obviously occur from drinking and eating too much sugar (1). Wouldnt it be just grand to reverse the process and be able to lose all that fat via gluconeogenesis? Unfortunately mammals do not have the ability to synthesize glucose from fats (1). The fact is that once glucose is converted to acetyl coA there is no method of getting back to glucose. The pyruvate dehydrogenase reaction that converts pyruvate to acetyl CoA is not reversible (1p252). Because lipid metabolism produces acetyl CoA via beta-oxidation, there can be no conversion to pyruvate or oxaloacetate that may have been used for gluconeogenesis (1p252). Further, the two carbons in the acetyl CoA molecule are lost upon entering the citric acid cycle (1p252). Thus, the acetyl CoA is used for energy (1p252). There are some fatty acids that have an odd number of carbon atoms that can be converted to glucose, but these are not common in the diet (1p253). Maybe they should be made more common. Do they taste good? 1. Gropper SS, Smith JL, Groff JL. Advanced Nutrition and Human Metabolism. Belmont, CA: Thomson Wadsworth, 2009. Continue reading >>

How The Body Uses Carbohydrates, Proteins, And Fats

How The Body Uses Carbohydrates, Proteins, And Fats

How the Body Uses Carbohydrates, Proteins, and Fats The human body is remarkably adept at making do with whatever type of food is available. Our ability to survive on a variety of diets has been a vital adaptation for a species that evolved under conditions where food sources were scarce and unpredictable. Imagine if you had to depend on successfully hunting a woolly mammoth or stumbling upon a berry bush for sustenance! Today, calories are mostly cheap and plentifulperhaps too much so. Understanding what the basic macronutrients have to offer can help us make better choices when it comes to our own diets. From the moment a bite of food enters the mouth, each morsel of nutrition within starts to be broken down for use by the body. So begins the process of metabolism, the series of chemical reactions that transform food into components that can be used for the body's basic processes. Proteins, carbohydrates , and fats move along intersecting sets of metabolic pathways that are unique to each major nutrient. Fundamentallyif all three nutrients are abundant in the dietcarbohydrates and fats will be used primarily for energy while proteins provide the raw materials for making hormones, muscle, and other essential biological equipment. Proteins in food are broken down into pieces (called amino acids) that are then used to build new proteins with specific functions, such as catalyzing chemical reactions, facilitating communication between different cells, or transporting biological molecules from here to there. When there is a shortage of fats or carbohydrates, proteins can also yield energy. Fats typically provide more than half of the body's energy needs. Fat from food is broken down into fatty acids, which can travel in the blood and be captured by hungry cells. Fatty aci Continue reading >>

Fat-to-glucose Interconversion By Hydrodynamic Transfer Of Two Glyoxylate Cycle Enzyme Genes

Fat-to-glucose Interconversion By Hydrodynamic Transfer Of Two Glyoxylate Cycle Enzyme Genes

Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes 1Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain 2Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarra, Pamplona, Spain Received 2008 Sep 29; Accepted 2008 Dec 10. Copyright 2008 Cordero et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes. Thousands of different life-related biochemical processes, such as cell respiration and many other metabolic reactions, can lead to the producti Continue reading >>

The Catabolism Of Fats And Proteins For Energy

The Catabolism Of Fats And Proteins For Energy

Before we get into anything, what does the word catabolism mean? When we went over catabolic and anabolic reactions, we said that catabolic reactions are the ones that break apart molecules. To remember what catabolic means, think of a CATastrophe where things are falling apart and breaking apart. You could also remember cats that tear apart your furniture. In order to make ATP for energy, the body breaks down mostly carbs, some fats and very small amounts of protein. Carbs are the go-to food, the favorite food that cells use to make ATP but now we’re going to see how our cells use fats and proteins for energy. What we’re going to find is that they are ALL going to be turned into sugars (acetyl) as this picture below shows. First let’s do a quick review of things you already know because it is assumed you learned cell respiration already and how glucose levels are regulated in your blood! Glucose can be stored as glycogen through a process known as glycogenesis. The hormone that promotes this process is insulin. Then when glycogen needs to be broken down, the hormone glucagon, promotes glycogenolysis (Glycogen-o-lysis) to break apart the glycogen and increase the blood sugar level. Glucose breaks down to form phosphoglycerate (PGAL) and then pyruvic acid. What do we call this process of splitting glucose into two pyruvic sugars? That’s glycolysis (glyco=glucose, and -lysis is to break down). When there’s not enough oxygen, pyruvic acid is converted into lactic acid. When oxygen becomes available, lactic acid is converted back to pyruvic acid. Remember that this all occurs in the cytoplasm. The pyruvates are then, aerobically, broken apart in the mitochondria into Acetyl-CoA. The acetyl sugars are put into the Krebs citric acid cycle and they are totally broken Continue reading >>

Fatty Acid Metabolism

Fatty Acid Metabolism

Fatty acid metabolism consists of catabolic processes that generate energy, and anabolic processes that create biologically important molecules (triglycerides, phospholipids, second messengers, local hormones and ketone bodies).[1] Fatty acids are a family of molecules classified within the lipid macronutrient class. One role of fatty acids in animal metabolism is energy production, captured in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle.[2] Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In addition, fatty acids are important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus). Fatty acids can also be cleaved, or partially cleaved, from their chemical attachments in the cell membrane to form second messengers within the cell, and local hormones in the immediate vicinity of the cell. The prostaglandins made from arachidonic acid stored in the cell membrane, are probably the most well known group of these local hormones. Fatty acid catabolism[edit] A diagrammatic illustration of the process of lipolysis (in a fat cell) induced by high epinephrine and low insulin levels in the blood. Epinephrine binds to a beta-adrenergic receptor in the cell membrane of the adipocyte, which causes cAMP to be generated inside Continue reading >>

More in ketosis