diabetestalk.net

Drug Induced Lactic Acidosis

Haart-induced Lactic Acidosis

Haart-induced Lactic Acidosis

Nucleoside Reverse Transcriptase Inhibitors are associated with hyperlactemia and lactic acidosis NRTI also cause pancreatitis, myopathy, peripheral neuropathy, anemia, neutropenia, hepatic toxicity [1] Specifically didanosine (ddI) and stavudine (d4T) These medicines are no longer first-line agents in the US and Europe, but are in low-middle income countries Adverse effects of NRTI is by way of mitochondrial toxicity. NRTI inhibit human DNA polymerase gamma, a key enzyme for mitochondrial replication. Impaired electron transport chain, leading to leakage of electrons and increased production of reactive oxygen species. [2] Variable onset of mitochondrial toxicity, and not at any set point in NRTI use. [2] Use of stavudine and didanosine containing regimens Additional studies cite a CD4 count less than 500 as a risk factor. [4] Age, as the risk of hyperlactemia increases 50% with every 10 years of aging Associated with dyslipidemia and insulin resistance [5] Since the symptoms are non-specific, most patients present with advanced symptoms and the more serious lactic acidosis. [3] Creatinine clearance, as renal failure is a significant risk factor for the development of lactic acidosis from hyperlactemia. . [7] Liver Function Test, as hepatic dysfunction precludes oxidation of lactate, thus resulting in elevated lactate levels in the blood Anecdotal evidence to support Riboflavin (50mg/day), and/or thiamine (100mg BID) [8] Stop all anti-retrovirals until lactate normalization [2] Consider antioixidant supplementation to reduce oxidative stress and hyperlactemia [9] Lee WM, Dienstag JL. Lee W.M., Dienstag J.L. Lee, William M., and Jules L. Dienstag.Toxic and Drug-Induced Hepatitis. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J. Kasper D, Fauci A, Hauser Continue reading >>

Lactic Acidosis Update For Critical Care Clinicians

Lactic Acidosis Update For Critical Care Clinicians

Lactic Acidosis Update for Critical Care Clinicians Franz Volhard Clinic and Max Delbrck Center for Molecular Medicine, Medical Faculty of the Charit Humboldt University of Berlin, Berlin, Germany. Correspondence to Dr. Friedrich C. Luft, Wiltberg Strasse 50, 13125 Berlin, Germany. Phone: 49-30-9417-2202; Fax: 49-30-9417-2206; E-mail: luft/{at}fvk-berlin.de Abstract. Lactic acidosis is a broad-anion gap metabolic acidosis caused by lactic acid overproduction or underutilization. The quantitative dimensions of these two mechanisms commonly differ by 1 order of magnitude. Overproduction of lactic acid, also termed type A lactic acidosis, occurs when the body must regenerate ATP without oxygen (tissue hypoxia). Circulatory, pulmonary, or hemoglobin transfer disorders are commonly responsible. Overproduction of lactate also occurs with cyanide poisoning or certain malignancies. Underutilization involves removal of lactic acid by oxidation or conversion to glucose. Liver disease, inhibition of gluconeogenesis, pyruvate dehydrogenase (thiamine) deficiency, and uncoupling of oxidative phosphorylation are the most common causes. The kidneys also contribute to lactate removal. Concerns have been raised regarding the role of metformin in the production of lactic acidosis, on the basis of individual case reports. The risk appears to be considerably less than with phenformin and involves patients with underlying severe renal and cardiac dysfunction. Drugs used to treat lactic acidosis can aggravate the condition. NaHCO3 increases lactate production. Treatment of type A lactic acidosis is particularly unsatisfactory. NaHCO3 is of little value. Carbicarb is a mixture of Na2CO3 and NaHCO3 that buffers similarly to NaHCO3 but without net generation of CO2. The results from animal stud Continue reading >>

Drug-induced Acid-base Disorders

Drug-induced Acid-base Disorders

Abstract The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk–alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine). Notes Continue reading >>

Drug-induced Acid-base Disorders.

Drug-induced Acid-base Disorders.

Department of Internal Medicine, Division of Nephrology, Robert Bosch Hospital, Auerbachstr. 110, 70376, Stuttgart, Germany, [email protected] The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine). Continue reading >>

Lactic Acidosis

Lactic Acidosis

Lactic acidosis is a medical condition characterized by the buildup of lactate (especially L-lactate) in the body, which results in an excessively low pH in the bloodstream. It is a form of metabolic acidosis, in which excessive acid accumulates due to a problem with the body's metabolism of lactic acid. Lactic acidosis is typically the result of an underlying acute or chronic medical condition, medication, or poisoning. The symptoms are generally attributable to these underlying causes, but may include nausea, vomiting, rapid deep breathing, and generalised weakness. The diagnosis is made on biochemical analysis of blood (often initially on arterial blood gas samples), and once confirmed, generally prompts an investigation to establish the underlying cause to treat the acidosis. In some situations, hemofiltration (purification of the blood) is temporarily required. In rare chronic forms of lactic acidosis caused by mitochondrial disease, a specific diet or dichloroacetate may be used. The prognosis of lactic acidosis depends largely on the underlying cause; in some situations (such as severe infections), it indicates an increased risk of death. Classification[edit] The Cohen-Woods classification categorizes causes of lactic acidosis as:[1] Type A: Decreased tissue oxygenation (e.g., from decreased blood flow) Type B B1: Underlying diseases (sometimes causing type A) B2: Medication or intoxication B3: Inborn error of metabolism Signs and symptoms[edit] Lactic acidosis is commonly found in people who are unwell, such as those with severe heart and/or lung disease, a severe infection with sepsis, the systemic inflammatory response syndrome due to another cause, severe physical trauma, or severe depletion of body fluids.[2] Symptoms in humans include all those of typical m Continue reading >>

Metformin-induced Lactic Acidosis: No One Left Behind

Metformin-induced Lactic Acidosis: No One Left Behind

Abstract Metformin is a safe drug when correctly used in properly selected patients. In real life, however, associated lactic acidosis has been repeatedly, although rarely, reported. The term metformin-induced lactic acidosis refers to cases that cannot be explained by any major risk factor other than drug accumulation, usually due to renal failure. Treatment consists of vital function support and drug removal, mainly achieved by renal replacement therapy. Despite dramatic clinical presentation, the prognosis of metformin-induced lactic acidosis is usually surprisingly good. In the previous issue of Critical Care, Friesecke and colleagues demonstrate that the survival rate of patients with severe lactic acidosis due to metformin accumulation can be strikingly higher than expected based on the initial clinical evaluation [1]. Metformin is nowadays the first-line drug of choice for the treatment of adults with type 2 diabetes [2]. This drug is the sixth most frequently prescribed in the USA (> 50 million prescriptions in 2009) and is taken by almost 1.5% of the Italian population [3, 4]. Metformin is a safe drug when correctly used in properly selected patients. In particular, no cases of lactic acidosis (a relatively common side effect of other biguanide compounds) were reported in 347 trials with 70,490 patient-years of metformin use [5]. Real life can differ from research settings, however, and lactic acidosis has been repeatedly, although rarely, observed in patients treated with metformin. The number of inquiries to the Swedish Poison Information Centre for metformin intoxication has increased 10 times during the past decade, with 25 cases of severe lactic acidosis reported in 2007 and 2008 [6]. According to the American Association of Poison Control Centers, metform Continue reading >>

Drug-induced Metabolic Acidosis

Drug-induced Metabolic Acidosis

SummaryDrug causes of metabolic acidosis are numerous and their mechanisms are diverse. Broadly, they can cause metabolic acidosis with either a normal anion gap (e.g. drug-induced renal tubular acidosis) or an elevated anion gap (e.g. drug-induced lactic acidosis or pyroglutamic acidosis). This review describes the drugs that can cause or contribute to metabolic acidosis during therapeutic use, the mechanisms by which this occurs, and how they may be identified in practice. aNeurointensive Care Unit, St George's University Hospitals NHS Foundation Trust bClinical Pharmacology, St George's University of London, London, UK Correspondence to Andrew W. Hitchings, Senior Lecturer in Clinical Pharmacology and Consultant in Neurointensive Care, St George's University Hospitals NHS Foundation Trust and St George's University of London, Cranmer Terrace, London SW17 0RE, UK. Tel: +44 20 8725 5380; e-mail: [email protected] Editor: R E Ferner, MSc, MD, FRCP, Director of the WestMidlands Centre for Adverse Drug Reaction Reporting and Consultant Physician at City Hospital, Birmingham, UK. Assistant Editor: Mr C Anton, MA, MEng. Editorial Board: Australia: Dr M Kennedy, Professor G M Shenfield, Denmark: Professor J S Schou; England: Dr J K Aronson,Dr A Hitchings; India: Professor N Gogtay; Netherlands: Professor C J van Boxtel, Dr B H Ch Stricker; New Zealand: Dr T Maling; Scotland: Dr D N Bateman; Wales: Professor P A Routledge. Copyright 2017 Wolters Kluwer Health, Inc. All rights reserved. Thought you might appreciate this item(s) I saw at Adverse Drug Reaction Bulletin. Your message has been successfully sent to your colleague. Some error has occurred while processing your request. Please try after some time. Continue reading >>

Lactic Acidosis Induced By Linezolid: A Case Study

Lactic Acidosis Induced By Linezolid: A Case Study

A Case of Lactic Acidosis Induced by Linezolid: Diagnosis Lactic acidosis is a common disorder associated with disturbed acid-base balance that may lead to ominous clinical consequences. Type A lactic acidosis refers to disturbances caused by tissue hypoperfusion, whereas type B is associated with predisposing conditions, such as liver or kidney failure, malignancies or alcoholism. In addition, the definition type B lactic acidosis also includes the drug-induced disorder. Prompt identification of the etiology of lactic acidosis is essential to implement early therapeutic interventions. Certain medications are known to cause lactic acidosis, most notably nucleoside reverse transcriptase inhibitors, which are used for the treatment of HIV infection, and biguanides such as metformin ( Table 2 ). Indeed, phenformin, an antidiabetic drug that belongs to the same class as metformin, was withdrawn from the market in 1977 because of the high incidence of lactic acidosis associated with its use. [2] Linezolid is as an oxazolidinone antimicrobial approved by the FDA in 2000 for the treatment of infections caused by methicillin-resistant Staphylococcus aureus and vancomycin-resistant E. fecalis. It is also used as second-line therapy for mycobacterial infections. Evidence suggests that linezolid inhibits bacterial protein synthesis by directly binding to residues within the 23S ribosomal RNA of the 50S large subunit of bacterial ribosomes. [3] Furthermore, linezolid seems to act specifically at the A-site of the ribosomal peptidyl transfer center to prevent peptide bond formation between aminoacyl groups on transfer RNAs located at the P and A site of the ribosome (Figure 2). [3,4] Therefore, the mechanism of linezolid action seems to involve the prevention of peptide bond format Continue reading >>

Drug-induced Lactic Acidosis: Case Report And Review

Drug-induced Lactic Acidosis: Case Report And Review

Drug-Induced Lactic Acidosis: Case Report and Review BMJ online hasa nicebrief case report and review of life-threatening metformin-induced lactic acidosis (MALA). Some key points: Although deliberate acute metformin overdose generally has a good prognosis, inadvertent chronic metformin toxicity is extremely serious and still has a mortality rate of about 50%. Precisely identifying the diagnosis and be difficult early on, since alternative considerations such as septic shock not only presents with similar features, but can also be the condition that precipitates MALA. Myocardial depression, hypotension , and metabolic acidosis likewise may represent an alternate diagnosis (cardiogenic shock) or may be manifestations of late-stage MALA. Many patients are continued on metformin despite the fact that they have one or more contraindications. Absolute contraindications include: renal dysfunction, significant congestive heart failure, underlying metabolic acidosis, liver disease, and recent use of radiographic contrast agents. Relative contraindications include: age > 80 years;alcohol abuse; occurrence of any condition associated with hypoxemia, dehydration, or sepsis (for example, viral gastroenteritis); or concomitant use of nephrotoxic drugs. Prolonged hemodialysis with a bicarbonate buffered replacement fluid will enhance elimination of metformin and correct acidosis. Continue reading >>

Review Metformin-associated Lactic Acidosis: Current Perspectives On Causes And Risk

Review Metformin-associated Lactic Acidosis: Current Perspectives On Causes And Risk

Abstract Although metformin has become a drug of choice for the treatment of type 2 diabetes mellitus, some patients may not receive it owing to the risk of lactic acidosis. Metformin, along with other drugs in the biguanide class, increases plasma lactate levels in a plasma concentration-dependent manner by inhibiting mitochondrial respiration predominantly in the liver. Elevated plasma metformin concentrations (as occur in individuals with renal impairment) and a secondary event or condition that further disrupts lactate production or clearance (e.g., cirrhosis, sepsis, or hypoperfusion), are typically necessary to cause metformin-associated lactic acidosis (MALA). As these secondary events may be unpredictable and the mortality rate for MALA approaches 50%, metformin has been contraindicated in moderate and severe renal impairment since its FDA approval in patients with normal renal function or mild renal insufficiency to minimize the potential for toxic metformin levels and MALA. However, the reported incidence of lactic acidosis in clinical practice has proved to be very low (< 10 cases per 100,000 patient-years). Several groups have suggested that current renal function cutoffs for metformin are too conservative, thus depriving a substantial number of type 2 diabetes patients from the potential benefit of metformin therapy. On the other hand, the success of metformin as the first-line diabetes therapy may be a direct consequence of conservative labeling, the absence of which could have led to excess patient risk and eventual withdrawal from the market, as happened with earlier biguanide therapies. An investigational delayed-release metformin currently under development could potentially provide a treatment option for patients with renal impairment pending the resu Continue reading >>

Lactic Acidosis

Lactic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. Description Lactic acidosis is a form of metabolic acidosis due to the inadequate clearance of lactic acid from the blood. Lactate is a byproduct of anaerobic respiration and is normally cleared from the blood by the liver, kidney and skeletal muscle. Lactic acidosis occurs when the body's buffering systems are overloaded and tends to cause a pH of ≤7.25 with plasma lactate ≥5 mmol/L. It is usually caused by a state of tissue hypoperfusion and/or hypoxia. This causes pyruvic acid to be preferentially converted to lactate during anaerobic respiration. Hyperlactataemia is defined as plasma lactate >2 mmol/L. Classification Cohen and Woods devised the following system in 1976 and it is still widely used:[1] Type A: lactic acidosis occurs with clinical evidence of tissue hypoperfusion or hypoxia. Type B: lactic acidosis occurs without clinical evidence of tissue hypoperfusion or hypoxia. It is further subdivided into: Type B1: due to underlying disease. Type B2: due to effects of drugs or toxins. Type B3: due to inborn or acquired errors of metabolism. Epidemiology The prevalence is very difficult to estimate, as it occurs in critically ill patients, who are not often suitable subjects for research. It is certainly a common occurrence in patients in high-dependency areas of hospitals.[2] The incidence of symptomatic hyperlactataemia appears to be rising as a consequence of the use of antiretroviral therapy to treat HIV infection. It appears to increase in those taking stavudine (d4T) regimens.[3] Causes of lactic acid Continue reading >>

(pdf) Drug-induced Metabolic Acidosis

(pdf) Drug-induced Metabolic Acidosis

Background: Tigecycline (TGC) is a last resort antibiotic having broad spectrum antibacterial activity againstgram-negative bacteria. Beyond its standard dosing regimen, a double dosing regimen has been practicing forlast couple of years to achieve adequate drug concentration in the targeted body tissues. TGC interferes with themitochondrial protein translation process and may lead to non-anion gap acute metabolic acidosis (NAGAMA) withlow blood-pH level. The main objective of this retrospective study was to evaluate the frequency of high dose TGCinducedNAGAMA events in the South Asian critically ill patients.Methods: The retrospective data of 24 critically ill patients of an intensive care unit (ICU) were considered forthis study. Patients of this study received high dose of TGC. Including all necessary laboratory data, patients aniongap, blood-pH level data in pre and post-TGC therapy were also recorded from the ICUs clinical-record archive. Allthe data were analyzed to find out the significance of NAGAMA event with high dose TGC therapy.Results: Among the patients administered with high dose TGC, 45.83% (11; n=24) of patients were experiencedwith NAGAMA event and in every 2.18 patients, 1 patient developed this event. Among those 11 patients, 63.64%of patients were recovered within 24 hours after stopping the TGC therapy and the rest of the patients (36.36%)were recovered within 48 hours, where 4 patients required therapeutic intervention to overcome the NAGAMA event.Conclusion: High dose TGC-induced NAGAMA event is an unusual event, globally. Mitochondrial toxicity isa TGC-associated adverse event and the related NAGAMA is a detrimental clinical consequence. However, thecomplete mechanism of this event is even not fully clear but, caution should be taken in the use Continue reading >>

Causes Of Lactic Acidosis

Causes Of Lactic Acidosis

INTRODUCTION AND DEFINITION Lactate levels greater than 2 mmol/L represent hyperlactatemia, whereas lactic acidosis is generally defined as a serum lactate concentration above 4 mmol/L. Lactic acidosis is the most common cause of metabolic acidosis in hospitalized patients. Although the acidosis is usually associated with an elevated anion gap, moderately increased lactate levels can be observed with a normal anion gap (especially if hypoalbuminemia exists and the anion gap is not appropriately corrected). When lactic acidosis exists as an isolated acid-base disturbance, the arterial pH is reduced. However, other coexisting disorders can raise the pH into the normal range or even generate an elevated pH. (See "Approach to the adult with metabolic acidosis", section on 'Assessment of the serum anion gap' and "Simple and mixed acid-base disorders".) Lactic acidosis occurs when lactic acid production exceeds lactic acid clearance. The increase in lactate production is usually caused by impaired tissue oxygenation, either from decreased oxygen delivery or a defect in mitochondrial oxygen utilization. (See "Approach to the adult with metabolic acidosis".) The pathophysiology and causes of lactic acidosis will be reviewed here. The possible role of bicarbonate therapy in such patients is discussed separately. (See "Bicarbonate therapy in lactic acidosis".) PATHOPHYSIOLOGY A review of the biochemistry of lactate generation and metabolism is important in understanding the pathogenesis of lactic acidosis [1]. Both overproduction and reduced metabolism of lactate appear to be operative in most patients. Cellular lactate generation is influenced by the "redox state" of the cell. The redox state in the cellular cytoplasm is reflected by the ratio of oxidized and reduced nicotine ad Continue reading >>

Metformin And Fatal Lactic Acidosis

Metformin And Fatal Lactic Acidosis

Publications Published: July 1998 Information on this subject has been updated. Read the most recent information. Dr P Pillans,former Medical Assessor, Centre for Adverse Reactions Monitoring (CARM), Dunedin Metformin is a useful anti-hyperglycaemic agent but significant mortality is associated with drug-induced lactic acidosis. Significant renal and hepatic disease, alcoholism and conditions associated with hypoxia (eg. cardiac and pulmonary disease, surgery) are contraindications to the use of metformin. Other risk factors for metformin-induced lactic acidosis are sepsis, dehydration, high dosages and increasing age. Metformin remains a major reported cause of drug-associated mortality in New Zealand. Of the 12 cases of lactic acidosis associated with metformin reported to CARM since 1977, 2 occurred in the last year and 8 cases had a fatal outcome. Metformin useful but small risk of potentially fatal lactic acidosis Metformin is a useful therapeutic agent for obese non-insulin dependent diabetics and those whose glycaemia cannot be controlled by sulphonylurea monotherapy. Lactic acidosis is an uncommon but potentially fatal adverse effect. The reported frequency of lactic acidosis is 0.06 per 1000 patient-years, mostly in patients with predisposing factors.1 Examples of metformin-induced lactic acidosis cases reported to CARM include: A 69-year-old man, with renal and cardiac disease, was prescribed metformin due to failing glycaemic control on glibenclamide monotherapy. He was well for six weeks, then developed lactic acidosis and died within 3 days. Post-surgical lactic acidosis caused the death of a 70-year-old man whose metformin was not withdrawn at the time of surgery. A 56-year-old woman, with no predisposing disease, died from lactic acidosis following major Continue reading >>

Lactic Acidosis: Background, Etiology, Epidemiology

Lactic Acidosis: Background, Etiology, Epidemiology

Author: Kyle J Gunnerson, MD; Chief Editor: Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM more... In basic terms, lactic acid is the normal endpoint of the anaerobic breakdown of glucose in the tissues. The lactate exits the cells and is transported to the liver, where it is oxidized back to pyruvate and ultimately converted to glucose via the Cori cycle. In the setting of decreased tissue oxygenation, lactic acid is produced as the anaerobic cycle is utilized for energy production. With a persistent oxygen debt and overwhelming of the body's buffering abilities (whether from chronic dysfunction or excessive production), lactic acidosis ensues. [ 1 , 2 ] (See Etiology.) Lactic acid exists in 2 optical isomeric forms, L-lactate and D-lactate. L-lactate is the most commonly measured level, as it is the only form produced in human metabolism. Its excess represents increased anaerobic metabolism due to tissue hypoperfusion. (See Workup.) D-lactate is a byproduct of bacterial metabolism and may accumulate in patients with short-gut syndrome or in those with a history of gastric bypass or small-bowel resection. [ 3 ] By the turn of the 20th century, many physicians recognized that patients who are critically ill could exhibit metabolic acidosis unaccompanied by elevation of ketones or other measurable anions. In 1925, Clausen identified the accumulation of lactic acid in blood as a cause of acid-base disorder. Several decades later, Huckabee's seminal work firmly established that lactic acidosis frequently accompanies severe illnesses and that tissue hypoperfusion underlies the pathogenesis. In their classic 1976 monograph, Cohen and Woods classified the causes of lactic acidosis according to the presence or absence of adequate tissue oxygenation. (See Presentationand Differe Continue reading >>

More in ketosis