diabetestalk.net

Dka Treatment Protocol

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

Treatment Of Diabetic Ketoacidosis With Subcutaneous Insulin Aspart

Treatment Of Diabetic Ketoacidosis With Subcutaneous Insulin Aspart

Abstract OBJECTIVE—In this prospective, randomized, open trial, we compared the efficacy and safety of aspart insulin given subcutaneously at different time intervals to a standard low-dose intravenous (IV) infusion protocol of regular insulin in patients with uncomplicated diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS—A total of 45 consecutive patients admitted with DKA were randomly assigned to receive subcutaneous (SC) aspart insulin every hour (SC-1h, n = 15) or every 2 h (SC-2h, n = 15) or to receive IV infusion of regular insulin (n = 15). Response to medical therapy was evaluated by assessing the duration of treatment until resolution of hyperglycemia and ketoacidosis. Additional end points included total length of hospitalization, amount of insulin administration until resolution of hyperglycemia and ketoacidosis, and number of hypoglycemic events. RESULTS—Admission biochemical parameters in patients treated with SC-1h (glucose: 44 ± 21 mmol/l [means ± SD], bicarbonate: 7.1 ± 3 mmol/l, pH: 7.14 ± 0.09) were similar to those treated with SC-2h (glucose: 42 ± 21 mmol/l, bicarbonate: 7.6 ± 4 mmol/l, pH: 7.15 ± 0.12) and IV regular insulin (glucose: 40 ± 13 mmol/l, bicarbonate 7.1 ± 4 mmol/l, pH: 7.11 ± 0.17). There were no statistical differences in the mean duration of treatment until correction of hyperglycemia (6.9 ± 4, 6.1 ± 4, and 7.1 ± 5 h) or until resolution of ketoacidosis (10 ± 3, 10.7 ± 3, and 11 ± 3 h) among patients treated with SC-1h and SC-2h or with IV insulin, respectively (NS). There was no mortality and no differences in the length of hospital stay, total amount of insulin administration until resolution of hyperglycemia or ketoacidosis, or the number of hypoglycemic events among treatment groups. CONCLUSIONS—Ou Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

952: Evaluation Of A Diabetic Ketoacidosis Treatment Protocol Using Subcutaneous Insulin Aspart

952: Evaluation Of A Diabetic Ketoacidosis Treatment Protocol Using Subcutaneous Insulin Aspart

Introduction:Insulin therapy is one aspect of managing diabetic ketoacidosis (DKA), and the American Diabetes Association recommends regular insulin by continuous IV infusion as the treatment of choice for all but mild cases of DKA. Several studies, each enrolling a small number of patients, have examined rapid-acting subcutaneous insulin analogs for DKA treatment. Patients in these studies who received subcutaneous insulin analogs were treated outside of the ICU. Hypothesis:A DKA treatment protocol that uses subcutaneous insulin aspart, with weight-based doses administered every two hours, is safe and effective. Methods:This study was a retrospective chart review. Adult patients who received insulin aspart for treatment of DKA at Rush University Medical Center between January 2008 and December 2011 were eligible for study inclusion. Efficacy outcomes included time to resolution of DKA-associated laboratory abnormalities, length of stay, time to initiation of basal insulin, and amount of insulin received. The primary safety outcome was hypoglycemic events. Subgroup analyses were conducted for type 1 vs. type 2 diabetes, DKA severity, and whether or not patients received concomitant antibiotics, steroids, or vasopressors. Results:Seventy-six patients treated with RUMCs DKA protocol were included in the study. The average age was 43 years, 46% were male, 64% were classified as having type 2 diabetes, and the most frequently identified precipitating causes of DKA were non-adherence and a new diabetes diagnosis. The average lengths of ICU and hospital stay were 43.36 and 100.48 hours, respectively. Patients received an average of 87 units of insulin aspart prior to initial of basal insulin, which occurred at a mean of 19.85 hours after ED admission. Six patients experience Continue reading >>

1. Initiate Iv Fluids Stat: Ivf Should Be Started In The Ed And Continued In Icu As Needed

1. Initiate Iv Fluids Stat: Ivf Should Be Started In The Ed And Continued In Icu As Needed

· Estimate intravascular volume status (via BUN/Cr, VS, orthostatic BP, urine output, physical exam, HgB)(to estimate saline requirement. · Assess free water deficit using corrected serum Na. A. Initial Fluid Orders: I. First correct intravascular fluid volume deficit with normal saline at a rate dependant on severity (being more cautious if cardiac or renal disease) a) 0.9% NaCl at 1-3 Liters /hr (15-20ml/kg) over 1 hour b) Give additional 0.9% NaCl IV rapidly if patient remains volume depleted. B. While Blood Glucose greater than 250 mg/dL -- Subsequent Fluid Orders: I. Calculate corrected Na: a) Corrected Sodium less than 134 mEq/L: continue 0.9% NaCl IV at 250-500 ml/hr until glucose less than 250 mg/dL, or corrected Na greater than 134 mEq/L. b) Corrected Sodium greater than or equal to 134 mEq/L: continue with 0.45% NaCl IV at 250-500 ml/hour until glucose less than 250 mg/dL, or corrected Na less than 134 mEq/L. II. If corrected Na decreases more than 2 mEq per hour, consider slowing the infusion rate. C. WHEN Blood Glucose less than 250mg/dL -- Subsequent Fluid Orders: I. Calculate corrected Na: a) Corrected sodium less than134 mEq/L: D5W/0.9% NaCl IV at 100 - 200 ml/hr b) Corrected Sodium greater than or equal to 134 mEq/L: D5W/0.45% NaCl IV at 100 - 200 ml/hr 2. Insulin Administration: · Hold all home anti-diabetic medications. · Initiate Insulin therapy AFTER IV fluid resuscitation has begun (500 ml or greater) and when potassium is 3.2 mEq/L or greater. · Insulin Infusion starting dose: (See Step 1 in Insulin Infusion Protocol; Page 4) A. Blood Glucose greater than or equal to 300mg/dL ( give 0.1 units/kg IV bolus and begin insulin infusion at 0.1 units/kg/hour, rounded to 0.5 unit increment, and use Insulin Infusion Protocol. B. Blood Glucose Continue reading >>

The Management Of Diabetic Ketoacidosis In Adults

The Management Of Diabetic Ketoacidosis In Adults

Action 1: Commence 0.9% sodium chloride solution (use large bore cannula) via infusion pump. See Box 2 for rate of fluid replacement Action 2: Commence a fixed rate intravenous insulin infusion (IVII). (0.1unit/kg/hr based on estimate of weight) 50 units human soluble insulin (Actrapid® or Humulin S®) made up to 50ml with 0.9% sodium chloride solution. If patient normally takes long acting insulin analogue (Lantus®, Levemir®) continue at usual dose and time Action 3: Assess patient o Respiratory rate; temperature; blood pressure; pulse; oxygen saturation o Glasgow Coma Scale o Full clinical examination Action 4: Further investigations • Capillary and laboratory glucose • Venous BG • U & E • FBC • Blood cultures • ECG • CXR • MSU Action 5: Establish monitoring regimen • Hourly capillary blood glucose • Hourly capillary ketone measurement if available • Venous bicarbonate and potassium at 60 minutes, 2 hours and 2 hourly thereafter • 4 hourly plasma electrolytes • Continuous cardiac monitoring if required • Continuous pulse oximetry if required Action 6: Consider and precipitating causes and treat appropriately BOX 1: Immediate management: time 0 to 60 minutes (T=0 at time intravenous fluids are commenced) If intravenous access cannot be obtained request critical care support immediately Systolic BP (SBP) below 90mmHg Likely to be due to low circulating volume, but consider other causes such as heart failure, sepsis, etc. • Give 500ml of 0.9% sodium chloride solution over 10-15 minutes. If SBP remains below 90mmHg repeat whilst requesting senior input. Most patients require between 500 to 1000ml given rapidly. • Consider involving the ITU/critical care team. • Continue reading >>

Diagnosis

Diagnosis

Print If your doctor suspects diabetic ketoacidosis, he or she will do a physical exam and various blood tests. In some cases, additional tests may be needed to help determine what triggered the diabetic ketoacidosis. Blood tests Blood tests used in the diagnosis of diabetic ketoacidosis will measure: Blood sugar level. If there isn't enough insulin in your body to allow sugar to enter your cells, your blood sugar level will rise (hyperglycemia). As your body breaks down fat and protein for energy, your blood sugar level will continue to rise. Ketone level. When your body breaks down fat and protein for energy, acids known as ketones enter your bloodstream. Blood acidity. If you have excess ketones in your blood, your blood will become acidic (acidosis). This can alter the normal function of organs throughout your body. Additional tests Your doctor may order tests to identify underlying health problems that might have contributed to diabetic ketoacidosis and to check for complications. Tests might include: Blood electrolyte tests Urinalysis Chest X-ray A recording of the electrical activity of the heart (electrocardiogram) Treatment If you're diagnosed with diabetic ketoacidosis, you might be treated in the emergency room or admitted to the hospital. Treatment usually involves: Fluid replacement. You'll receive fluids — either by mouth or through a vein (intravenously) — until you're rehydrated. The fluids will replace those you've lost through excessive urination, as well as help dilute the excess sugar in your blood. Electrolyte replacement. Electrolytes are minerals in your blood that carry an electric charge, such as sodium, potassium and chloride. The absence of insulin can lower the level of several electrolytes in your blood. You'll receive electrolytes throu Continue reading >>

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Understand the management of patients with diabetic ketoacidosis and other hyperglycemic emergencies. ​ The acute onset of hyperglycemia with attendant metabolic derangements is a common presentation in all forms of diabetes mellitus. The most current data from the National Diabetes Surveillance Program of the Centers for Disease Control and Prevention estimate that during 2005-2006, at least 120,000 hospital discharges for diabetic ketoacidosis (DKA) occurred in the United States,(1) with an unknown number of discharges related to hyperosmolar hyperglycemic state (HHS). The clinical presentations of DKA and HHS can overlap, but they are usually separately characterized by the presence of ketoacidosis and the degree of hyperglycemia and hyperosmolarity, though HHS will occasionally have some mild degree of ketosis. DKA is defined by a plasma glucose level >250 mg/dL, arterial pH <7.3, the presence of serum ketones, a serum bicarbonate measure <18 mEq/L, and a high anion gap metabolic acidosis. The level of normal anion gap may vary slightly by individual institutional standards. The anion gap also needs to be corrected in the presence of hypoalbuminemia, a common condition in the critically ill. Adjusted anion gap = observed anion gap + 0.25 * ([normal albumin]-[observed albumin]), where the given albumin concentrations are in g/L; if given in g/dL, the correction factor is 2.5.(3) HHS is defined by a plasma glucose level >600 mg/dL, with an effective serum osmolality >320 mOsm/kg. HHS was originally named hyperosmolar hyperglycemic nonketotic coma; however, this name was changed because relatively few patients exhibit coma-like symptoms. Effective serum osmolality = 2*([Na] + [K]) + glucose (mg/dL)/18.(2) Urea is freely diffusible across cell membranes, thus it will Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

Diabetic Ketoacidosis In Pregnancy

Diabetic Ketoacidosis In Pregnancy

Diagnosis of DKA: � Initial STAT labs include • CBC with diff • Serum electrolytes • BUN • Creatinine • Glucose • Arterial blood gases • Bicarbonate • Urinalysis • Lactate • Serum ketones • Calculation of the Anion Gap � serum anion gap = serum sodium – (serum chloride + bicarbonate) • Electrocardiogram Treatment Protocol for Diabetic Ketoacidosis Reviewed 5/2/2017 2 Updated 05/02/17 DKA Diagnostic Criteria: � Blood glucose >250 mg/dl � Arterial pH <7.3 � Bicarbonate ≤18 mEq/l � Anion Gap Acidosis � Moderate ketonuria or ketonemia 1. Start IV fluids (1 L of 0.9% NaCl per hr initially) 2. If serum K+ is <3.3 mEq/L hold insulin � Give 40 mEq/h until K ≥ 3.3 mEq/L 3. Initiate DKA Order Set Phase I (*In PREGNANCY utilize OB DKA order set) 4. Start insulin 0.14 units/kg/hr IV infusion (calculate dose) RN will titrate per DKA protocol Insulin Potassium Bicarbonate IVF Look for the Cause - Infection/Inflammation (PNA, UTI, pancreatitis, cholecystitis) - Ischemia/Infarction (myocardial, cerebral, gut) - Intoxication (EtOH, drugs) - Iatrogenic (drugs, lack of insulin) - Insulin deficiency - Pregnancy DKA/HHS Pathway Phase 1 (Adult) Approved by Diabetes Steering Committee, MMC, 2015, Revised DKA Workgroup 1_2016 Initiate and continue insulin gtt until serum glucose reaches 250 mg/dl. RN will titrate per protocol to achieve target. When sugar < 250 mg/dl proceed to DKA Phase II *In PREGNANCY when sugar <200 proceed to OB DKA Phase II *PREGNANCY � Utilize OB DKA order set Phase 1 � When glucose reaches 200mg/dL, Initiate OB DKA Phase 2 � Glucose goals 100-150mg/dL OB DKA Phase 2 Determine hydration status Hypovolemic shock Mild hypotensio Continue reading >>

Hyperglycemic Crises In Adult Patients With Diabetes

Hyperglycemic Crises In Adult Patients With Diabetes

Diabetic ketoacidosis (DKA) and the hyperosmolar hyperglycemic state (HHS) are the two most serious acute metabolic complications of diabetes. DKA is responsible for more than 500,000 hospital days per year (1,2) at an estimated annual direct medical expense and indirect cost of 2.4 billion USD (2,3). Table 1 outlines the diagnostic criteria for DKA and HHS. The triad of uncontrolled hyperglycemia, metabolic acidosis, and increased total body ketone concentration characterizes DKA. HHS is characterized by severe hyperglycemia, hyperosmolality, and dehydration in the absence of significant ketoacidosis. These metabolic derangements result from the combination of absolute or relative insulin deficiency and an increase in counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). Most patients with DKA have autoimmune type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness such as trauma, surgery, or infections. This consensus statement will outline precipitating factors and recommendations for the diagnosis, treatment, and prevention of DKA and HHS in adult subjects. It is based on a previous technical review (4) and more recently published peer-reviewed articles since 2001, which should be consulted for further information. Recent epidemiological studies indicate that hospitalizations for DKA in the U.S. are increasing. In the decade from 1996 to 2006, there was a 35% increase in the number of cases, with a total of 136,510 cases with a primary diagnosis of DKA in 2006—a rate of increase perhaps more rapid than the overall increase in the diagnosis of diabetes (1). Most patients with DKA were between the ages of 18 and 44 years (56%) and 45 and 65 years (24%), with only 18% of patie Continue reading >>

Management Of Diabetic Ketoacidosis

Management Of Diabetic Ketoacidosis

Diabetic ketoacidosis is an emergency medical condition that can be life-threatening if not treated properly. The incidence of this condition may be increasing, and a 1 to 2 percent mortality rate has stubbornly persisted since the 1970s. Diabetic ketoacidosis occurs most often in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus); however, its occurrence in patients with type 2 diabetes (formerly called non–insulin-dependent diabetes mellitus), particularly obese black patients, is not as rare as was once thought. The management of patients with diabetic ketoacidosis includes obtaining a thorough but rapid history and performing a physical examination in an attempt to identify possible precipitating factors. The major treatment of this condition is initial rehydration (using isotonic saline) with subsequent potassium replacement and low-dose insulin therapy. The use of bicarbonate is not recommended in most patients. Cerebral edema, one of the most dire complications of diabetic ketoacidosis, occurs more commonly in children and adolescents than in adults. Continuous follow-up of patients using treatment algorithms and flow sheets can help to minimize adverse outcomes. Preventive measures include patient education and instructions for the patient to contact the physician early during an illness. Diabetic ketoacidosis is a triad of hyperglycemia, ketonemia and acidemia, each of which may be caused by other conditions (Figure 1).1 Although diabetic ketoacidosis most often occurs in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus), more recent studies suggest that it can sometimes be the presenting condition in obese black patients with newly diagnosed type 2 diabetes (formerly called non–insulin-depe Continue reading >>

Review Of Evidence For Adult Diabetic Ketoacidosis Management Protocols

Review Of Evidence For Adult Diabetic Ketoacidosis Management Protocols

1Department of Endocrinology, Austin Health, Melbourne, VIC, Australia 2Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia 3Department of Intensive Care, Austin Health, Melbourne, VIC, Australia 4Menzies School of Health Research, Darwin, NT, Australia Background: Diabetic ketoacidosis (DKA) is an endocrine emergency with associated risk of morbidity and mortality. Despite this, DKA management lacks strong evidence due to the absence of large randomised controlled trials (RCTs). Objective: To review existing studies investigating inpatient DKA management in adults, focusing on intravenous (IV) fluids; insulin administration; potassium, bicarbonate, and phosphate replacement; and DKA management protocols and impact of DKA resolution rates on outcomes. Methods: Ovid Medline searches were conducted with limits “all adult” and published between “1973 to current” applied. National consensus statements were also reviewed. Eligibility was determined by two reviewers’ assessment of title, abstract, and availability. Results: A total of 85 eligible articles published between 1973 and 2016 were reviewed. The salient findings were (i) Crystalloids are favoured over colloids though evidence is lacking. The preferred crystalloid and hydration rates remain contentious. (ii) IV infusion of regular human insulin is preferred over the subcutaneous route or rapid acting insulin analogues. Administering an initial IV insulin bolus before low-dose insulin infusions obviates the need for supplemental insulin. Consensus-statements recommend fixed weight-based over “sliding scale” insulin infusions although evidence is weak. (iii) Potassium replacement is imperative although no trials compare replacement rates. (iv) Bicarbonate replacement Continue reading >>

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Standardized pediatric-specific treatment is required to ensure safe correction of metabolic derangements associated with DKA. ABSTRACT: British Columbia has an estimated 150 to 200 new cases of type 1 diabetes in children annually. In these cases, 10% to 20% of patients will present in diabetic ketoacidosis (DKA). DKA is associated with significant fluid and biochemical derangements, necessitating a thoughtful, structured approach to its management. Recent gains have been made in knowledge about the pathophysiology and medical care of DKA and its most significant complication, cerebral edema. In response, BC Children’s Hospital has devised an updated medical protocol for managing DKA in infants, children, and adolescents that conforms to new international consensus guidelines. The protocol assists the medical practitioner in calculating fluid and electrolyte replacement needs for individual patients and outlines a plan for initial assessment and ongoing monitoring. Accompanying resources have also been developed to aid nursing, laboratory, and pharmacy colleagues to ensure that all children presenting with DKA in this province are managed following scientifically established guidelines. Canada has one of the highest rates of type 1 diabetes (T1D) in the world. The estimated incidence of T1D in Canadian children aged 0 to 14 years is 21.7 per 100000 per year.[1] Using 2008 census data,[2] prevalence in this age group in British Columbia is estimated to be about 1029 established cases of T1D or about 150 new cases per year. Much publicity has been given to the rising incidence of type 2 diabetes (T2D) in youth and young adults in North America, a phenomenon that we are also observing in our province, but the fact that there has also been a 2% to 3% annual increase in t Continue reading >>

More in ketosis