diabetestalk.net

Dka Protocol Uptodate

Pardon Our Interruption...

Pardon Our Interruption...

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen: You're a power user moving through this website with super-human speed. You've disabled JavaScript in your web browser. A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article. After completing the CAPTCHA below, you will immediately regain access to Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. DKA is characterized by ketoacidosis and hyperglycemia, while HHS usually has more severe hyperglycemia but no ketoacidosis (table 1). Each represents an extreme in the spectrum of hyperglycemia. The precipitating factors, clinical features, evaluation, and diagnosis of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, and treatment of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Epidemiology And Pathogenesis

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Epidemiology And Pathogenesis

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also called hyperosmotic hyperglycemic nonketotic state) are two of the most serious acute complications of diabetes. They each represent an extreme in the hyperglycemic spectrum. The epidemiology and the factors responsible for the metabolic abnormalities of DKA and HHS in adults will be discussed here. The clinical features, evaluation, diagnosis, and treatment of these disorders are discussed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment".) EPIDEMIOLOGY Diabetic ketoacidosis (DKA) is characteristically associated with type 1 diabetes. It also occurs in type 2 diabetes under conditions of extreme stress such as serious infection, trauma, cardiovascular or other emergencies, and, less often, as a presenting manifestation of type 2 diabetes, a disorder called ketosis-prone diabetes mellitus. (See "Syndromes of ketosis-prone diabetes mellitus".) DKA is more common in young (<65 years) patients, whereas hyperosmolar hyperglycemic state (HHS) most commonly develops in individuals older than 65 years [1,2]. The National Diabetes Surveillance Program of the Centers for Disease Control (CDC) estimated that there were 140,000 hospital discharges for DKA in 2009 in the United States, compared to 80,000 in 1988 (figure 1) [2]. Population-based data are not available for HHS. The rate of hospital admissions for HHS is lower than the rate for DKA, and accounts for less than 1 percent of all primary diabetic admissions [1,3-5]. The mortality rate for hyperglycemic crisis declined between 1980 and 2009 (figure 2) [6]. Mortality in Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Go to: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are acute metabolic complications of diabetes mellitus that can occur in patients with both type 1 and 2 diabetes mellitus. Timely diagnosis, comprehensive clinical and biochemical evaluation, and effective management is key to the successful resolution of DKA and HHS. Critical components of the hyperglycemic crises management include coordinating fluid resuscitation, insulin therapy, and electrolyte replacement along with the continuous patient monitoring using available laboratory tools to predict the resolution of the hyperglycemic crisis. Understanding and prompt awareness of potential of special situations such as DKA or HHS presentation in comatose state, possibility of mixed acid-base disorders obscuring the diagnosis of DKA, and risk of brain edema during the therapy are important to reduce the risks of complications without affecting recovery from hyperglycemic crisis. Identification of factors that precipitated DKA or HHS during the index hospitalization should help prevent subsequent episode of hyperglycemic crisis. For extensive review of all related areas of Endocrinology, visit WWW.ENDOTEXT.ORG. Go to: INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) represent two extremes in the spectrum of decompensated diabetes. DKA and HHS remain important causes of morbidity and mortality among diabetic patients despite well developed diagnostic criteria and treatment protocols (1). The annual incidence of DKA from population-based studies is estimated to range from 4 to 8 episodes per 1,000 patient admissions with diabetes (2). The incidence of DKA continues to increase and it accounts for about 140,000 hospitalizations in the US in 2009 (Figure 1 a) (3). Continue reading >>

Diabetes Ketoacidosis

Diabetes Ketoacidosis

1. DIABETIC KETO-ACIDOSIS MANAGEMENT 2. INTRODUCTION  HHS and DKA are not mutually exclusive but rather two conditions that both result from some degree of insulin deficiency.  They can and often do occur simultaneously. In fact, one third of patients admitted for hyperglycemia exhibit characteristics of both HHS and DKA. 14th edition of Joslin's Diabetes Mellitus 3. DEFINITION DKA is defined as the presence of all three of the following: (i) Hyperglycemia (glucose >250 mg/dL) (ii) Ketosis, (iii) Acidemia (pH <7.3). 14th edition of Joslin's Diabetes Mellitus 4. PATHOPHYSIOLOGY Insulin Deficiency Glucose uptake Lipolysis Proteolysis Glycerol Free Fatty Acids Amino Acids Hyperglycemia Osmotic diuresis Ketogenesis Gluconeogenesis Glycogenolysis Dehydration Acidosis 14th edition of Joslin's Diabetes Mellitus 5. ROLE OF INSULIN  Required    for transport of glucose into: Muscle Adipose Liver  Inhibits lipolysis  Absence of insulin Glucose accumulates in the blood.  Uses amino acids for gluconeogenesis  Converts fatty acids into ketone bodies : Acetone, Acetoacetate, β-hydroxybutyrate.  6. DIABETIC KETOACIDOSIS PRECIPITATING EVENTS  Infection(Pneumonia / UTI / Gastroenteritis / Sepsis)  Inadequate insulin administration  Infarction(cerebral,  Drugs coronary, mesenteric, peripheral) (cocaine)  Pregnancy. Harrison’s Principle of internal medicine 18th edition p2977 7. SYMPTOMS DKA PHYSICAL FINDINGS can be the first Dehydration/hypotension presentation. Tachypnea/kussmaul Nausea/vomiting Thirst/polyuria Abdominal pain Shortnessof Tachycardia breath respirations/respiratory distress Fruity odour in breath. Abdominal tenderness(may resemble acute pancreatitis or surgical abdomen) Lethargy/obtundati Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Background Hyperosmolar hyperglycemic state (HHS) is one of two serious metabolic derangements that occurs in patients with diabetes mellitus (DM). [1] It is a life-threatening emergency that, although less common than its counterpart, diabetic ketoacidosis (DKA), has a much higher mortality rate, reaching up to 5-10%. (See Epidemiology.) HHS was previously termed hyperosmolar hyperglycemic nonketotic coma (HHNC); however, the terminology was changed because coma is found in fewer than 20% of patients with HHS. [2] HHS is most commonly seen in patients with type 2 DM who have some concomitant illness that leads to reduced fluid intake, as seen, for example, in elderly institutionalized persons with decreased thirst perception and reduced ability to drink water. [3] Infection is the most common preceding illness, but many other conditions, such as stroke or myocardial infarction, can cause this state. [3] Once HHS has developed, it may be difficult to identify or differentiate it from the antecedent illness. (See Etiology.) HHS is characterized by hyperglycemia, hyperosmolarity, and dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits. [2, 4, 5] The clinical features of HHS and DKA overlap and are observed simultaneously (overlap cases) in up to one third of cases. According to the consensus statement published by the American Diabetes Association, diagnostic features of HHS may include the following (see Workup) [4, 6] : Effective serum osmolality of 320 mOsm/kg or greater Profound dehydration, up to an average of 9L Detection and treatment of an underlying illness are critical. Standard care for dehydration and altered mental status is appropriate, including airway management, intravenous (I Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis Damian Baalmann, 2nd year EM resident A 45-year-old male presents to your emergency department with abdominal pain. He is conscious, lucid and as the nurses are hooking up the monitors, he explains to you that he began experiencing abdominal pain, nausea, vomiting about 2 days ago. Exam reveals a poorly groomed male with dry mucous membranes, diffusely tender abdomen with voluntary guarding. He is tachycardic, tachypneic but normotensive. A quick review of the chart reveals a prolonged history of alcohol abuse and after some questioning, the patient admits to a recent binge. Pertinent labs reveal slightly elevated anion-gap metabolic acidosis, normal glucose, ethanol level of 0, normal lipase and no ketones in the urine. What are your next steps in management? Alcoholic Ketoacidosis (AKA): What is it? Ketones are a form of energy made by the liver by free fatty acids released by adipose tissues. Normally, ketones are in small quantity (<0.1 mmol/L), but sometimes the body is forced to increase its production of these ketones. Ketones are strong acids and when they accumulate in large numbers, their presence leads to an acidosis. In alcoholics, a combination or reduced nutrient intake, hepatic oxidation of ethanol, and dehydration can lead to ketoacidosis. Alcoholics tend to rely on ethanol for their nutrient intake and when the liver metabolizes ethanol it generates NADH. This NADH further promotes ketone formation in the liver. Furthermore, ethanol promotes diuresis which leads to dehydration and subsequently impairs ketone excretion in the urine. Alcoholic Ketoacidosis: How do I recognize it? Typical history involves a chronic alcohol abuser who went on a recent binge that was terminated by severe nausea, vomiting, and abdominal pain. These folk Continue reading >>

Dka: Critical Care Lecture Series

Dka: Critical Care Lecture Series

Results from an absolute or relative deficiency of circulating insulin Absolute deficiency occurs in previously undiagnosed type 1 or when patients on treatment do not take their insulin, purposefully or inadvertently Relative deficiency happens when counter-regulatory hormones increase due to stress:sepsis, trauma, GI illness Increases-- catecholamines, glucagon, cortisol and growth hormone Low insulin with high counter-regulatory hormones causes an accelerated catabolic state Increase glucose production by the liver and the kidney Via glycogenolysis and gluconeogenesis Impaired peripheral glucose utilization resulting in hyperosmolarity and hyperglycemia Increased lipolysis and ketogenesis resulting in metabolic acidosis and ketonemia Hyperglycemia exceeding the renal threshold and hyperketonemia cause the osmotic diuresis, dehydration and obligatory loss of electrolytes Aggravated by vomiting These mechanisms continues to increase the counter-regulatory hormones which worsen the process Without intervention, life threatening metabolic acidosis and dehydration will occur 4 Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

Hyperglycemia

Hyperglycemia

University of California San Francisco, Fresno, California Edited By: David A. Wald Temple University School of Medicine Philadelphia, Pennsylvania Objectives The objectives of this module will be to: Review the classic presentation of a patient with hyperglycemia, including DKA and HHS. Review the diagnostic work up of the hyperglycemic patient. Review the principles of managing a patient with hyperglycemia. Hyperglycemia complicating diabetes ranges from the asymptomatic and benign in patients with mild to moderate uncomplicated hyperglycemia to the life-threatening (i.e. diabetic ketoacidosis (DKA) or hyperosmolar hyperglycemic state (HHS). DKA and HHS represent a spectrum of complications from diabetes and differ mainly in the level of hyperglycemia, extent of dehydration and presence and degree of ketoacidosis. Each condition revolves around insulin deficiency, either absolute or relative. DKA and HHS are the most serious, acute metabolic complications of diabetes. Generally DKA occurs in younger patients (<65 y/o) with Type 1 diabetes and usually evolves rapidly over 24 hours. HHS usually occurs in older patients (>65 y/o) with poorly controlled Type 2 diabetes and evolves over several days. Both disease entities originate from a reduction in insulin and an increase in counter-regulatory stress hormones. In the emergency department hyperglycemia is most often seen as a complication of diabetes (both types 1 and 2). Hyperglycemia is defined as: Fasting Blood Glucose (for 8 hrs) > 90 – 130 mg/dL Postprandial Blood Glucose > 180 mg/dL Initial Actions and Primary Survey In these patients, a thorough history and physical examination should be performed with a focus on trying to identify a precipitating cause of the hyperglycemia. In patients with an incidental findin Continue reading >>

Treatment And Complications Of Diabetic Ketoacidosis In Children And Adolescents

Treatment And Complications Of Diabetic Ketoacidosis In Children And Adolescents

INTRODUCTION Diabetic ketoacidosis (DKA) is the leading cause of morbidity and mortality in children with type 1 diabetes mellitus (T1DM), with a case fatality rate ranging from 0.15 percent to 0.31 percent [1-3]. DKA also can occur in children with type 2 DM (T2DM); this presentation is most common among youth of African-American descent [4-8]. (See "Classification of diabetes mellitus and genetic diabetic syndromes".) The management of DKA in children will be reviewed here (table 1). There is limited experience in the management and outcomes of DKA in children with T2DM, although the same principles should apply. The clinical manifestations and diagnosis of DKA in children and the pathogenesis of DKA are discussed elsewhere. (See "Clinical features and diagnosis of diabetic ketoacidosis in children and adolescents" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) DEFINITION Diabetic ketoacidosis – A consensus statement from the International Society for Pediatric and Adolescent Diabetes (ISPAD) in 2014 defined the following biochemical criteria for the diagnosis of diabetic ketoacidosis (DKA) [9]: Hyperglycemia – Blood glucose of >200 mg/dL (11 mmol/L) AND Metabolic acidosis – Venous pH <7.3 or a plasma bicarbonate <15 mEq/L (15 mmol/L) AND Continue reading >>

Pediatric Diabetic Ketoacidosis Treatment & Management

Pediatric Diabetic Ketoacidosis Treatment & Management

Approach Considerations In patients with diabetic ketoacidosis, the first principals of resuscitation apply (ie, the ABCs [airway, breathing, circulation]). [3] Outcomes are best when children are closely monitored and a changing status is promptly addressed. [39, 2] Give oxygen, although this has no effect on the respiratory drive of acidosis. Diagnose by clinical history, physical signs, and elevated blood glucose. Fluid, insulin, and electrolyte (potassium and, in select cases, bicarbonate) replacement is essential in the treatment of diabetic ketoacidosis. Early in the treatment of diabetic ketoacidosis, when blood glucose levels are very elevated, the child can continue to experience massive fluid losses and deteriorate. Strict measurement of fluid balance is essential for optimal treatment. Continuous subcutaneous insulin infusion therapy using an insulin pump should be stopped during the treatment of diabetic ketoacidosis. Inpatient care Children with severe acidosis (ie, pH < 7.1) or with altered consciousness should be admitted to a pediatric intensive care unit. In cases in which the occurrence of diabetic ketoacidosis signals a new diagnosis of diabetes, the process of education and support by the diabetes team should begin when the patient recovers. In cases in which diabetic ketoacidosis occurs in a child with established diabetes, explore the cause of the episode and take steps to prevent a recurrence. Following recovery from diabetic ketoacidosis, patients require subcutaneous insulin therapy. Outpatient care Organize outpatient care through the pediatric diabetes care team. Consultations Consult a neurosurgeon if cerebral edema is suspected. Once the child has recovered, he or she can resume a normal diet. Guidelines The International Society for Pediatr Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Subscribe to Harvard Health Online for immediate access to health news and information from Harvard Medical School. Continue reading >>

Beste Online Kasinoer I Norge

Beste Online Kasinoer I Norge

Spilleautomater Dka Management Uptodate Pediatric diabetic ketoacidosis, uid therapy, and cerebral injury: Pediatric diabetic ketoacidosis, uid therapy, in DKA management continues to exist. Our general interest enewsletter keeps you up to date on a wide Mayo Clinic, MayoClinic. Diabetic ketoacidosis (DKA) is a common, serious, and preventable complication of type 1 diabetes, with a mortality of 35. Diabetic Ketoacidosis Abdelaziz Elamin Professor of Pediatric Endocrinology University of Khartoum, Sudan Management The management steps of DKA includes. Diabetes Management Uptodate Gestational Diabetes And Induction The 3 Step Trick that Reverses Diabetes Permanently in As Little as 11 Days. Diabetes Dka Symptoms Diabetes Type 1 Uptodate The 3 Step Trick that Reverses Diabetes medication management for diabetes type 2. Management of DKA in children the calculator, you must download it from the website to ensure that you are using the most uptodate version. Diabetes Treatment Uptodate: : We had been talking about pain management and the speaker launched a statement any. Diabetes Dka Talk to your doctor when you experience overwhelmed and work together to find a way to simplify your diabetes management. These guidelines for the management of DKA in children and young people under the age of 18 years @ Diabetes Medication Dosing Display Measure Diabetes Management Uptodate The 3 Step Trick that Reverses Diabetes Permanently in As Little as 11 Days. Diabetic ketoacidosis (DKA) is a potentially lifethreatening complication of diabetes mellitus. Signs and symptoms may include vomiting, Management Edit. Diabetes Treatment Uptodate Diabetes Management During Pregnancy The 3 Step Trick that Reverses Diabetes Permanently in As Little as 11 Days. Diabetes Type 2 Uptodate: : Diabetes Continue reading >>

More in ketosis