diabetestalk.net

Dka Pathophysiology Made Simple

Dka Vs Hhs (hhns) Nclex Review

Dka Vs Hhs (hhns) Nclex Review

Diabetic ketoacidosis vs hyperglycemic hyperosmolar nonketotic syndrome (HHNS or HHS): What are the differences between these two complications of diabetes mellitus? This NCLEX review will simplify the differences between DKA and HHNS and give you a video lecture that easily explains their differences. Many students get these two complications confused due to their similarities, but there are major differences between these two complications. After reviewing this NCLEX review, don’t forget to take the quiz on DKA vs HHNS. Lecture on DKA and HHS DKA vs HHNS Diabetic Ketoacidosis Affects mainly Type 1 diabetics Ketones and Acidosis present Hyperglycemia presents >300 mg/dL Variable osmolality Happens Suddenly Causes: no insulin present in the body or illness/infection Seen in young or undiagnosed diabetics Main problems are hyperglycemia, ketones, and acidosis (blood pH <7.35) Clinical signs/symptoms: Kussmaul breathing, fruity breath, abdominal pain Treatment is the same as in HHNS (fluids, electrolyte replacement, and insulin) Watch potassium levels closely when giving insulin and make sure the level is at least 3.3 before administrating. Hyperglycemic Hyperosmolar Nonketotic Syndrome Affects mainly Type 2 diabetics No ketones or acidosis present EXTREME Hyperglycemia (remember heavy-duty hyperglycemia) >600 mg/dL sometimes four digits High Osmolality (more of an issue in HHNS than DKA) Happens Gradually Causes: mainly illness or infection and there is some insulin present which prevents the breakdown of ketones Seen in older adults due to illness or infection Main problems are dehydration & heavy-duty hyperglycemia and hyperosmolarity (because the glucose is so high it makes the blood very concentrated) More likely to have mental status changes due to severe dehydrat Continue reading >>

Pediatric Diabetic Ketoacidosis

Pediatric Diabetic Ketoacidosis

Pediatric Diabetic Ketoacidosis Authors: Katia M. Lugo-Enriquez, MD, FACEP, Faculty, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Nick Passafiume, MD, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Peer Reviewer: Richard A. Brodsky, MD, Pediatric Emergency Medicine, St. Christopher's Hospital for Children, Assistant Professor, Drexel University, Philadelphia, PA. Children with diabetes, especially type 1, remain at risk for developing diabetic ketoacidosis (DKA). This may seem confounding in a modern society with such advanced medical care, but the fact remains that children who are type 1 diabetics have an incidence of DKA of 8 per 100 patient years.1 In fact, Neu and colleagues have noted in a multicenter analysis of 14,664 patients in Europe from 1995 to 2007 that there was no significant change in ketoacidosis presenting at diabetes onset in children.2 In children younger than 19 years old, DKA is the admitting diagnosis in 65% of all hospital admissions of patients with diabetes mellitus.3 This article reviews the presentation, diagnostic evaluation, treatment, and potential complications associated with pediatric DKA. — The Editor Introduction The overall mortality rate for children in DKA is not unimpressive: The range is 0.15% to 0.31%.4 Besides death, one of the most feared repercussions of DKA in children is cerebral edema, an entity that occurs approximately 1% of the time.5,6 Cerebral edema, with the exception of a few case reports in some young adults, has largely been a complication of treatment in the pediatric population, and the exact factors have yet to be completely determined. The mortality associated with cerebral edema may approach 20% to 50%, and the incidence of neurologic morbidity is significant and Continue reading >>

Physiology Of Diabetic Ketoacidosis

Physiology Of Diabetic Ketoacidosis

Threatening complication of diabetes that mainly occurs in patients with type diabetes, but it is. Is an acute, major, life. Acute complications of diabetes. Diabetic ketoacidosis. A 12 year old boy, previously healthy, is admitted to the hospiral after days of polyuria, polyphagia, nausea, vomting and abdominal pain. Diabetic Neuropathy Pathophysiology. Define Diabetic Ketoacidosis. If so, your doctor is confusing diabetic ketoacidosis. Vs Type Signs And Symptoms The Step Trick that Reverses Diabetes Permanently. With nutritional ketosis. Diabetes Physiology Read. Are two of the most serious. Diabetes Permanently in As Little as 11 Days. Diabetic ketoacidosis. The Medical Biochemistry Page is a portal for the understanding of biochemical, metabolic, and physiological processes with an emphasis on medical relevance. The REAL cause of Diabetes. All of the issues are related to acid. Fraction of inspired oxygen. The Step Trick that Reverses. Arterial oxygen content. This review focuses on three issues facing clinicians who care for patients with diabetic ketoacidosis. Diabetic Vegetarian Diet. HHS, also known as hyperosmotic hyperglycemic nonketotic state. Treating Diabetic Ketoacidosis Basics Safety. Diabetic ketoacidosis. Problems in Diabetic Ketoacidosis. And hyperosmolar hyperglycemic state. TREATING DIABETIC KETOACIDOSIS. Preciable decrease in the effective arterial blood. You may have heard from your doctor that ketosis is a life. Video embeddedPathophysiology lecture on diabetic nephropathy, focused on the pathology of mesangial cells and mesangial expansion. Threatening condition. Textbook of Medical Physiology. Diabetic ketoacidosis pathophysiology journal. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Diabetes Pathophysiology

Diabetes Pathophysiology

Diabetes occurs when there is a dis-balance between the demand and production of the hormone insulin. Control of blood sugar When food is taken, it is broken down into smaller components. Sugars and carbohydrates are thus broken down into glucose for the body to utilize them as an energy source. The liver is also able to manufacture glucose. In normal persons the hormone insulin, which is made by the beta cells of the pancreas, regulates how much glucose is in the blood. When there is excess of glucose in blood, insulin stimulates cells to absorb enough glucose from the blood for the energy that they need. Insulin also stimulates the liver to absorb and store any excess glucose that is in the blood. Insulin release is triggered after a meal when there is a rise in blood glucose. When blood glucose levels fall, during exercise for example, insulin levels fall too. High insulin will promote glucose uptake, glycolysis (break down of glucose), and glycogenesis (formation of storage form of glucose called glycogen), as well as uptake and synthesis of amino acids, proteins, and fat. Low insulin will promote gluconeogenesis (breakdown of various substrates to release glucose), glycogenolysis (breakdown of glycogen to release gluose), lipolysis (breakdown of lipids to release glucose), and proteolysis (breakdown of proteins to release glucose). Insulin acts via insulin receptors. Liver Adipose or fat Tissue Muscle High insulin Glycolysis Glycogenesis Triglyceride synthesis Amino acid uptake Protein synthesis Low insulin Gluconeogenesis Glycogenolysis Lipolysis Proteolysis Normal Responses to Eating and Fasting In a fed state: there is increased insulin secretion, causing glycolysis, glycogen storage, fatty acid synthesis/storage, and protein synthesis. After an overnight fast: Continue reading >>

Diabetic Ketoacidosis In Pregnancy

Diabetic Ketoacidosis In Pregnancy

Abstract Diabetic ketoacidosis (DKA) is a life-threatening medical emergency and is characterized by hyperglycemia, acidosis, and ketonemia. DKA is observed in 5–10 % of all pregnancies complicated by pregestational diabetes mellitus. Laboratory findings are as follows: Ketonemia 3 mmol/L and over or significant ketonuria (more than 2+ on standard urine sticks) Blood glucose over 11 mmol/L or known diabetes mellitus Bicarbonate (HCO3 −−) below 15 mmol/L and/or venous pH less than 7.3 Common risk factors for DKA in pregnancy are new-onset diabetes, infections like UTI, influenza, poor patient compliance, insulin pump failure, treatment with β-mimetic tocolytic medications, and antenatal corticosteroids for fetal lung maturity. Patient should be counseled about the precipitating cause and early warning symptoms of DKA. DKA should be treated promptly, and HDU/level 2 facility with trained nursing staff and/or insertion of central line is required during pregnancy for its management. Continuous fetal heart rate monitoring commonly demonstrates recurrent late decelerations. Delivery is rarely indicated as FHR pattern resolves as maternal condition improves. DKA therapy can lead to frequent complication of hypoglycemia and hypokalemia, so glucose and K concentration monitoring should be done judiciously. Maternal mortality is rare now with proper management, but fetal mortality is still quite high ranging from 10 to 35 %. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis is a medical emergency that typically occurs as a complication of type 1 diabetes. It can occur in people with undiagnosed type 1 diabetes or in diabetics with: decreased insulin intake intercurrent illness stress of any form (e.g.infection, surgery, MI) Pathophysiology The pathophysiology (see image) of diabetic ketoacidosis must be considered to help understand its presentation and the necessary management. There are 3 main biochemical features: hyperglycaemia hyperketonaemia metabolic acidosis Firstly, lack of insulin causes glucose to remain in the blood rather than be transferred into cells for utilisation. The body therefore responds as if it were in starvation and hepatic glucose production becomes increased. Osmotic diuresis occurs as a consequence of this glucose rich blood being filtered by the kidneys. Glucose is normally reabsorbed by the proximal tubule but in DKA the amount of glucose filtered exceeds the renal threshold for reabsorbtion. The presence of glucose in the tubules causes water retention in the lumen, thus increasing urine output and decreasing reabsorption into the body, leading to dehydration and electrolyte depletion. Secondly, an absence of insulin together with elevated stress hormones such as catecholamines, leads to lipolysis, resulting in numerous free fatty acids available for hepatic ketogenesis. Consequently, there is increased ketone body formation by fatty acid oxidation in the liver, leading to an elevated level in the blood. These ketones give a distinct smell to the urine and breath. Thirdly, the ketone bodies lower the pH of the blood resulting in metabolic acidosis. This causes nausea and vomiting resulting in further dehydration. The body compensates for the acidosis by hyperventilation (Kussmals respira Continue reading >>

Classification, Pathophysiology, Diagnosis And Management Of Diabetes Mellitus

Classification, Pathophysiology, Diagnosis And Management Of Diabetes Mellitus

University of Gondar, Ethopia *Corresponding Author: Habtamu Wondifraw Baynes Lecturer Clinical Chemistry University of Gondar, Gondar Amhara 196, Ethiopia Tel: +251910818289 E-mail: [email protected] Citation: Baynes HW (2015) Classification, Pathophysiology, Diagnosis and Management of Diabetes Mellitus. J Diabetes Metab 6:541. doi:10.4172/2155-6156.1000541 Copyright: © 2015 Baynes HW. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Visit for more related articles at Journal of Diabetes & Metabolism Abstract Diabetes Mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia either immune-mediated (Type 1 diabetes), insulin resistance (Type 2), gestational or others (environment, genetic defects, infections, and certain drugs). According to International Diabetes Federation Report of 2011 an estimated 366 million people had DM, by 2030 this number is estimated to almost around 552 million. There are different approaches to diagnose diabetes among individuals, The 1997 ADA recommendations for diagnosis of DM focus on fasting Plasma Glucose (FPG), while WHO focuses on Oral Glucose Tolerance Test (OGTT). This is importance for regular follow-up of diabetic patients with the health care provider is of great significance in averting any long term complications. Keywords Diabetes mellitus; Epidemiology; Diagnosis; Glycemic management Abbreviations DM: Diabetes Mellitus; FPG: Fasting Plasma Glucose; GAD: Glutamic Acid Decarboxylase; GDM: Gestational Diabetes Mellitus; HDL-cholesterol: High Density Lipoprotein cholesterol; HLA: Human Leucoid Antigen; IDD Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis Explained

Diabetic Ketoacidosis Explained

Twitter Summary: DKA - a major complication of #diabetes – we describe what it is, symptoms, who’s at risk, prevention + treatment! One of the most notorious complications of diabetes is diabetic ketoacidosis, or DKA. First described in the late 19th century, DKA represented something close to the ultimate diabetes emergency: In just 24 hours, people can experience an onset of severe symptoms, all leading to coma or death. But DKA also represents one of the great triumphs of the revolution in diabetes care over the last century. Before the discovery of insulin in 1920, DKA was almost invariably fatal, but the mortality rate for DKA dropped to below 30 percent within 10 years, and now fewer than 1 percent of those who develop DKA die from it, provided they get adequate care in time. Don’t skip over that last phrase, because it’s crucial: DKA is very treatable, but only as long as it’s diagnosed promptly and patients understand the risk. Table of Contents: What are the symptoms of DKA? Does DKA occur in both type 1 and type 2 diabetes? What Can Patients do to Prevent DKA? What is DKA? Insulin plays a critical role in the body’s functioning: it tells cells to absorb the glucose in the blood so that the body can use it for energy. When there’s no insulin to take that glucose out of the blood, high blood sugar (hyperglycemia) results. The body will also start burning fatty acids for energy, since it can’t get that energy from glucose. To make fatty acids usable for energy, the liver has to convert them into compounds known as ketones, and these ketones make the blood more acidic. DKA results when acid levels get too high in the blood. There are other issues too, as DKA also often leads to the overproduction and release of hormones like glucagon and adrenaline Continue reading >>

Acute Complications Of Diabetes - Diabetic Ketoacidosis

Acute Complications Of Diabetes - Diabetic Ketoacidosis

- [Voiceover] Oftentimes we think of diabetes mellitus as a chronic disease that causes serious complications over a long period of time if it's not treated properly. However, the acute complications of diabetes mellitus are often the most serious, and can be potentially even life threatening. Let's discuss one of the acute complications of diabetes, known as diabetic ketoacidosis, or DKA for short, which can occur in individuals with type 1 diabetes. Now recall that type 1 diabetes is an autoimmune disorder. And as such, there's an autoimmune destruction of the beta cells in the pancreas, which prevents the pancreas from producing and secreting insulin. Therefore, there is an absolute insulin deficiency in type 1 diabetes. But what exactly does this mean for the body? To get a better understanding, let's think about insulin requirements as a balancing act with energy needs. Now the goal here is to keep the balance in balance. As the energy requirements of the body go up, insulin is needed to take the glucose out of the blood and store it throughout the body. Normally in individuals without type 1 diabetes, the pancreas is able to produce enough insulin to keep up with any amount of energy requirement. But how does this change is someone has type 1 diabetes? Well since their pancreas cannot produces as much insulin, they have an absolute insulin deficiency. Now for day-to-day activities, this may not actually cause any problems, because the small amount of insulin that is produced is able to compensate and keep the balance in balance. However, over time, as type 1 diabetes worsens, and less insulin is able to be produced, then the balance becomes slightly unequal. And this results in the sub-acute or mild symptoms of type 1 diabetes such as fatigue, because the body isn Continue reading >>

Diabetic Ketoacidosis And Cerebral Edema

Diabetic Ketoacidosis And Cerebral Edema

Elliot J. Krane, M.D. Departments of Pediatrics and Anesthesiology Stanford University Medical Center Introduction In 1922 Banting and Best introduced insulin into clinical practice. A decade later the first reported case of cerebral edema complicating diabetic ketoacidosis (DKA) was reported by Dillon, Riggs and Dyer writing in the pathology literature. While the syndrome of cerebral edema complicating DKA was either not seen, ignored, or was unrecognized by the medical community until 3 decades later when the complication was again reported by Young and Bradley at the Joslin Clinic, there has since been a flurry of case reports in the 1960's and 1970's and basic and clinical research from the 1970's to the 1990's leading to our present day acceptance of this as a known complication of DKA, or of the management of DKA. In fact, we now recognize that the cerebral complications of DKA (including much less frequent cerebral arterial infarctions, venous sinus thrombosis, and central nervous system infections) are the most common cause of diabetic-related death of young diabetic patients (1), accounting for 31% of deaths associated with DKA and 20% of all diabetic deaths, having surpassed aspiration, electrolyte imbalance, myocardial infarction, etc. Furthermore, diabetes mellitus remains an important cause of hospitalization of young children. The prevalence rate of diabetes continues to grow in all Western developed nations, nearly doubling every decade, resulting in 22,000 hospital admissions in children under 15 years of age for diabetes in the United States in 1994, the majority of which were due to ketoacidosis. With approximately 4 hospital admissions of children for DKA per 100,000 population per year (2), every PICU located in a major metropolitan center will conti Continue reading >>

Sickly Sweet: Understanding Diabetic Ketoacidosis

Sickly Sweet: Understanding Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life threatening condition that can occur to people with diabetes. It is observed primarily in people with type 1 diabetes (insulin dependent), but it can occur in type 2 diabetes (non-insulin dependent) under certain circumstances. The reason for why it is not often seen in people with type 2 diabetes is because their body is still able to produce insulin, so the pathophysiology explained in the flowchart below is not as dramatic as compared to people with type 1 diabetes who do not make any insulin at all. There are various symptoms associated with DKA including: Hyperglycaemia Polyphagia (increased appetite and hunger) Polydipsia (increased thirst) Polyuria (increased urination) Glycosuria (glucose in the urine) Ketonuria (ketones in urine) Ketones in blood Sweet, fruity breath Tachypnoea leading to Kussmaul breathing (deep and laboured breathing pattern) The body tries to compensate for the ketone bodies (acid) by eliminating carbon dioxide (also an acid) thereby attempting to make the body more alkalotic to normalise the pH The compensation between the metabolic and respiratory system can be read about in this article Decreased bicarbonate The body tries to use the available bicarbonate (base) to buffer the ketone bodies (acid) in order to improve the metabolic ketoacidosis This actually worsens the situation the lower the bicarbonate becomes with a continual production of ketones Increased drowsiness/decreased level of consciousness As the pH decreases and becomes more acidotic, it has a direct effect on decreasing the level of consciousness in a person Increased urea Electrolyte disturbances Tachycardia and other cardiac arrhythmias Tachycardia is often a compensatory mechanism for the hypotension Cardiac arrhythmias a Continue reading >>

More in ketosis