diabetestalk.net

Dka Pathophysiology Made Simple

Diabetes And Hypoglycemia Video Classroom

Diabetes And Hypoglycemia Video Classroom

Diabetes Overview Beginning Signs of Diabetes Pathophysiology of Diabetic Nephropathy Glucose Insulin and Diabetes (Kahn) Juvenile Diabetes Research Foundation Animation about Diabetes Subtle Warning Signs of Diabetes Diabetes Animation Diabetes Made Simple A Day Living with Diabetes Pathophysiology of Diabetes Mellitus Be Diabetes Prepared Health and Science in Diabetes Role of Insulin in Body Living with Diabetes: Documentary What is Diabetes? Diabetes Type 2: Animation Diabetes Symptoms in Men Glucose Animation Diabetes Emergencies 1 Managing Diabetes Insulin Resistence Diabetes: Foot Care Complications of Diabetes Diabetes Emergencies 2 Type 1 Diabetes Medical Science on Type 2 Diabetes Exercise in Diabetics Type 1 Diabetes Animation Diabetes Emergencies 3 Type 2 Diabetes Board Review: Type 1 and 2 Diabetes Diabetes: Excercise: Reverse Resistence 2 Diabetes Animation Treating Hypoglycemia Quickly What is Type 1 Diabetes Management of Diabetes Diabetes: Excercise as Medicine Metformin Medication Hypoglycemia Pathophysiology of Diabetes Pathophysiology of Diabetes 2 Made Easy Diabetes Animation Metformin for Diabetes Diabetic Ketoacidosis Diabetes: Progress in Stem Cell Research Diabetic Nephropathy for the Non-Nephrologist Diabetes Education Diabetes Medications Diabetic DKA Embryonic Stem Cell Diabetes Research Diabetic Retinopathy Insulin, Glucose and You Metformin Still the Best! Inpatient Diabetes Management Diabetes Basics Diabetic Eye Disease Insulin: Synthesis and Secretion 1 Understanding Diabetes Type 2 Hyperglycemic Crises: Part 1 Diabetes Symptoms Obesity and Diabetes Insulin: Synthesis and Secretion 2 Diabetes Update 2010 Hyperglycemic Crises: Part 2 Diabetes: Complications Metabolism and Nutrition: Diabetes Insulin: Synthesis and Secretion 3 Juvenile Dia Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a medical emergency that can happen in people with diabetes mellitus. DKA happens mostly in people with Type 1 diabetes, although it may happen in some people that have Type 2 diabetes. DKA happens when a person does not have enough insulin in their body. All of the cells in the body need glucose (sugar) to survive, because the body needs sugar to make energy. Insulin breaks down glucose into a form that the body can use for energy. Without insulin, sugar stays in the blood and cannot get into the cells. This causes high blood sugar levels and makes it impossible for the cells to use glucose to make energy. DKA can be caused by not having enough insulin, eating too many carbohydrates, and sometimes physical or mental stress. DKA can also be a sign that a person has diabetes that has not been discovered, or is not being controlled well. DKA is diagnosed through blood and urine testing. These tests will show high blood sugar, which does not happen with other forms of ketoacidosis. DKA was first discovered around 1886. Before insulin therapy was first used in the 1920s, DKA almost always caused death. The "3 polys" of DKA: Polydipsia (feeling very thirsty; this is caused by dehydration) Polyphagia (feeling very hungry; the brain realizes the body's cells are not getting enough sugar and triggers hunger, because normally eating would give the cells the sugar they need) Polyuria (urinating a lot; this is the body's way of trying to get rid of the extra glucose in the bloodstream) A "fruity" smell on the breath (acetone breath, caused by the body trying to blow off the acids and waste products created by DKA) Abdominal pain As DKA gets worse, it can cause these symptoms:[2] Confusion, which becomes worse and worse (because the brain is not getti Continue reading >>

Diabetic Ketoacidosis: Clinical Practice Guidelines

Diabetic Ketoacidosis: Clinical Practice Guidelines

1. Introduction Diabetic ketoacidosis (DKA), the most common endocrinal emergency remains a life-threatening condition despite improvements in diabetes care [1]. The mortality and morbidity rates remain high worldwide, especially in developing countries and among non-hospitalized patients [2,3], which highlight the importance of early diagnosis and implementation of effective preventive and management strategies. The adage "The child is not a miniature adult" is most appropriate when considering DKA. The fundamental pathophysiology of DKA is the same in children as in adults; however, the child differs from the adult in a number of characteristics which raise some important considerations in management [2]. The purpose of this chapter is to briefly review the pathophysiology of DKA and discuss recommended treatment protocols and current standards of care pertaining to children, adolescents and adults with type 1 or 2 diabetes presenting with DKA. The information provided is based on evidence from published studies and internationally accepted guidelines whenever possible and, when not, supported by expert opinion or consensus [1-5]. Current concepts of cerebral edema, recommendations and strategies for the prediction and prevention of DKA and hence its complications are finally presented. The considerations and recommendations included are in agreement with those endorsed by the American Diabetes Association (ADA), Lawson Wilkins Pediatric Endocrine Society (LWPES), European Society for Pediatric Endocrinology (ESPE), and the International Society for Pediatric and Adolescent Diabetes (ISPAD) [2-5]. Thus, this book chapter will provide easy and practical information to guide healthcare professional who manage DKA in all age groups. 2. Definition of Diabetic Ketoacidosis Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Management Of Diabetic Ketoacidosis In Adults

Management Of Diabetic Ketoacidosis In Adults

Diabetic ketoacidosis is a potentially life-threatening complication of diabetes, making it a medical emergency. Nurses need to know how to identify and manage it and how to maintain electrolyte balance Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Go to: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are acute metabolic complications of diabetes mellitus that can occur in patients with both type 1 and 2 diabetes mellitus. Timely diagnosis, comprehensive clinical and biochemical evaluation, and effective management is key to the successful resolution of DKA and HHS. Critical components of the hyperglycemic crises management include coordinating fluid resuscitation, insulin therapy, and electrolyte replacement along with the continuous patient monitoring using available laboratory tools to predict the resolution of the hyperglycemic crisis. Understanding and prompt awareness of potential of special situations such as DKA or HHS presentation in comatose state, possibility of mixed acid-base disorders obscuring the diagnosis of DKA, and risk of brain edema during the therapy are important to reduce the risks of complications without affecting recovery from hyperglycemic crisis. Identification of factors that precipitated DKA or HHS during the index hospitalization should help prevent subsequent episode of hyperglycemic crisis. For extensive review of all related areas of Endocrinology, visit WWW.ENDOTEXT.ORG. Go to: INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) represent two extremes in the spectrum of decompensated diabetes. DKA and HHS remain important causes of morbidity and mortality among diabetic patients despite well developed diagnostic criteria and treatment protocols (1). The annual incidence of DKA from population-based studies is estimated to range from 4 to 8 episodes per 1,000 patient admissions with diabetes (2). The incidence of DKA continues to increase and it accounts for about 140,000 hospitalizations in the US in 2009 (Figure 1 a) (3). Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis is a medical emergency that typically occurs as a complication of type 1 diabetes. It can occur in people with undiagnosed type 1 diabetes or in diabetics with: decreased insulin intake intercurrent illness stress of any form (e.g.infection, surgery, MI) Pathophysiology The pathophysiology (see image) of diabetic ketoacidosis must be considered to help understand its presentation and the necessary management. There are 3 main biochemical features: hyperglycaemia hyperketonaemia metabolic acidosis Firstly, lack of insulin causes glucose to remain in the blood rather than be transferred into cells for utilisation. The body therefore responds as if it were in starvation and hepatic glucose production becomes increased. Osmotic diuresis occurs as a consequence of this glucose rich blood being filtered by the kidneys. Glucose is normally reabsorbed by the proximal tubule but in DKA the amount of glucose filtered exceeds the renal threshold for reabsorbtion. The presence of glucose in the tubules causes water retention in the lumen, thus increasing urine output and decreasing reabsorption into the body, leading to dehydration and electrolyte depletion. Secondly, an absence of insulin together with elevated stress hormones such as catecholamines, leads to lipolysis, resulting in numerous free fatty acids available for hepatic ketogenesis. Consequently, there is increased ketone body formation by fatty acid oxidation in the liver, leading to an elevated level in the blood. These ketones give a distinct smell to the urine and breath. Thirdly, the ketone bodies lower the pH of the blood resulting in metabolic acidosis. This causes nausea and vomiting resulting in further dehydration. The body compensates for the acidosis by hyperventilation (Kussmals respira Continue reading >>

Pediatric Diabetic Ketoacidosis

Pediatric Diabetic Ketoacidosis

Pediatric Diabetic Ketoacidosis Authors: Katia M. Lugo-Enriquez, MD, FACEP, Faculty, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Nick Passafiume, MD, Florida Hospital Emergency Medicine Residency Program, Orlando, FL. Peer Reviewer: Richard A. Brodsky, MD, Pediatric Emergency Medicine, St. Christopher's Hospital for Children, Assistant Professor, Drexel University, Philadelphia, PA. Children with diabetes, especially type 1, remain at risk for developing diabetic ketoacidosis (DKA). This may seem confounding in a modern society with such advanced medical care, but the fact remains that children who are type 1 diabetics have an incidence of DKA of 8 per 100 patient years.1 In fact, Neu and colleagues have noted in a multicenter analysis of 14,664 patients in Europe from 1995 to 2007 that there was no significant change in ketoacidosis presenting at diabetes onset in children.2 In children younger than 19 years old, DKA is the admitting diagnosis in 65% of all hospital admissions of patients with diabetes mellitus.3 This article reviews the presentation, diagnostic evaluation, treatment, and potential complications associated with pediatric DKA. — The Editor Introduction The overall mortality rate for children in DKA is not unimpressive: The range is 0.15% to 0.31%.4 Besides death, one of the most feared repercussions of DKA in children is cerebral edema, an entity that occurs approximately 1% of the time.5,6 Cerebral edema, with the exception of a few case reports in some young adults, has largely been a complication of treatment in the pediatric population, and the exact factors have yet to be completely determined. The mortality associated with cerebral edema may approach 20% to 50%, and the incidence of neurologic morbidity is significant and Continue reading >>

Spilleautomater Dka Pathophysiology Made

Spilleautomater Dka Pathophysiology Made

Spilleautomater Dka Pathophysiology Made Related Images "Spilleautomater Dka Pathophysiology Made" (307 pics): Diabetic Ketoacidosis DKA Nursing Diabetes Care Dka Guidelines: : Pathophysiology Of Diabetes Mellitus Diabetes Care Dka Guidelines The web has definitely made lifestyle a lot. Diabetic ketoacidosis (DKA) continues to have high rates of morbidity and mortality despite advances in the Pathophysiology of Diabetic Ketoacidosis. Why Do Not Click To Get it diabetes pathophysiology made simple, You Want Something Special About diabetes. Diabetes Dka Symptoms He is the author of Diabetes Control Made easy. Diabetes Dka Symptoms Today I am writing about any complication that sometimes. Diabetic ketoacidosis (DKA) is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Pathophysiology Of Diabetes Mellitus Diabetes Medication Made Easy The 3 Step Trick that Reverses Diabetes Permanently in As Little as 11 Days. Diabetes Care Dka Sglt2 Lactulose And Diabetes The 3 Step Trick that Reverses Diabetes Permanently in As Little as 11 Days. Diabetic ketoacidosis (DKA) is an acute, major, lifethreatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is. Warnings are typically not custommade. Dka Diabetic Ketoacidosis There will not be reversing diabetes type 2 in these diets. Management of diabetic ketoacidosis in adults. Pathophysiology DKA results from a dysregulation of carbo made up with 50ml normal saline. Diabetes Mellitus Pathophysiology for maintaining a tally of your regimens and how well it is or is not working for you and any adjustments which can be made. Definition: Metabolic aniongap acidosis due to elevated serum ketones PATHOPHYSIOLOGY Acidemia Osmotic immediate postDKA stage nursi Continue reading >>

Acute Complications Of Diabetes - Diabetic Ketoacidosis

Acute Complications Of Diabetes - Diabetic Ketoacidosis

- [Voiceover] Oftentimes we think of diabetes mellitus as a chronic disease that causes serious complications over a long period of time if it's not treated properly. However, the acute complications of diabetes mellitus are often the most serious, and can be potentially even life threatening. Let's discuss one of the acute complications of diabetes, known as diabetic ketoacidosis, or DKA for short, which can occur in individuals with type 1 diabetes. Now recall that type 1 diabetes is an autoimmune disorder. And as such, there's an autoimmune destruction of the beta cells in the pancreas, which prevents the pancreas from producing and secreting insulin. Therefore, there is an absolute insulin deficiency in type 1 diabetes. But what exactly does this mean for the body? To get a better understanding, let's think about insulin requirements as a balancing act with energy needs. Now the goal here is to keep the balance in balance. As the energy requirements of the body go up, insulin is needed to take the glucose out of the blood and store it throughout the body. Normally in individuals without type 1 diabetes, the pancreas is able to produce enough insulin to keep up with any amount of energy requirement. But how does this change is someone has type 1 diabetes? Well since their pancreas cannot produces as much insulin, they have an absolute insulin deficiency. Now for day-to-day activities, this may not actually cause any problems, because the small amount of insulin that is produced is able to compensate and keep the balance in balance. However, over time, as type 1 diabetes worsens, and less insulin is able to be produced, then the balance becomes slightly unequal. And this results in the sub-acute or mild symptoms of type 1 diabetes such as fatigue, because the body isn Continue reading >>

Diabetes Pathophysiology

Diabetes Pathophysiology

Diabetes occurs when there is a dis-balance between the demand and production of the hormone insulin. Control of blood sugar When food is taken, it is broken down into smaller components. Sugars and carbohydrates are thus broken down into glucose for the body to utilize them as an energy source. The liver is also able to manufacture glucose. In normal persons the hormone insulin, which is made by the beta cells of the pancreas, regulates how much glucose is in the blood. When there is excess of glucose in blood, insulin stimulates cells to absorb enough glucose from the blood for the energy that they need. Insulin also stimulates the liver to absorb and store any excess glucose that is in the blood. Insulin release is triggered after a meal when there is a rise in blood glucose. When blood glucose levels fall, during exercise for example, insulin levels fall too. High insulin will promote glucose uptake, glycolysis (break down of glucose), and glycogenesis (formation of storage form of glucose called glycogen), as well as uptake and synthesis of amino acids, proteins, and fat. Low insulin will promote gluconeogenesis (breakdown of various substrates to release glucose), glycogenolysis (breakdown of glycogen to release gluose), lipolysis (breakdown of lipids to release glucose), and proteolysis (breakdown of proteins to release glucose). Insulin acts via insulin receptors. Liver Adipose or fat Tissue Muscle High insulin Glycolysis Glycogenesis Triglyceride synthesis Amino acid uptake Protein synthesis Low insulin Gluconeogenesis Glycogenolysis Lipolysis Proteolysis Normal Responses to Eating and Fasting In a fed state: there is increased insulin secretion, causing glycolysis, glycogen storage, fatty acid synthesis/storage, and protein synthesis. After an overnight fast: Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Classification, Pathophysiology, Diagnosis And Management Of Diabetes Mellitus

Classification, Pathophysiology, Diagnosis And Management Of Diabetes Mellitus

University of Gondar, Ethopia *Corresponding Author: Habtamu Wondifraw Baynes Lecturer Clinical Chemistry University of Gondar, Gondar Amhara 196, Ethiopia Tel: +251910818289 E-mail: [email protected] Citation: Baynes HW (2015) Classification, Pathophysiology, Diagnosis and Management of Diabetes Mellitus. J Diabetes Metab 6:541. doi:10.4172/2155-6156.1000541 Copyright: © 2015 Baynes HW. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Visit for more related articles at Journal of Diabetes & Metabolism Abstract Diabetes Mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia either immune-mediated (Type 1 diabetes), insulin resistance (Type 2), gestational or others (environment, genetic defects, infections, and certain drugs). According to International Diabetes Federation Report of 2011 an estimated 366 million people had DM, by 2030 this number is estimated to almost around 552 million. There are different approaches to diagnose diabetes among individuals, The 1997 ADA recommendations for diagnosis of DM focus on fasting Plasma Glucose (FPG), while WHO focuses on Oral Glucose Tolerance Test (OGTT). This is importance for regular follow-up of diabetic patients with the health care provider is of great significance in averting any long term complications. Keywords Diabetes mellitus; Epidemiology; Diagnosis; Glycemic management Abbreviations DM: Diabetes Mellitus; FPG: Fasting Plasma Glucose; GAD: Glutamic Acid Decarboxylase; GDM: Gestational Diabetes Mellitus; HDL-cholesterol: High Density Lipoprotein cholesterol; HLA: Human Leucoid Antigen; IDD Continue reading >>

More in ketosis