diabetestalk.net

Dka Pathophysiology

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketocacidosis (DKA) is a medical emegency caused by insufficient levels of insulin and increased levels of counter-regulatory hormones such as glucagon, epinephrine, and cortisol. This leads to significant, potentially life-threatening metabolic abnormalities, including hyperglycemia, anion gap metabolic acidosis, hyperketonemia, ketonuria. The Case of Rachel R Rachel is a 34 year-old woman with type I diabetes. She has poor control of her sugars during the best of days, and she has not been counting her dietary intake or monitoring her blood glucose over the past two days, as she has been ill with a bad cold. She feels increasingly unwell and comes to the emergency department with nausea, vomiting, and blurred vision. What are the symptoms of DKA? How is it diagnosed? How do you treat someone like Rachel? return to top Causes and Risk Factors DKA is more common in Type 1 DM than type II, due to complete insulin deficiency and counter-regulatory hormones. It is precipitated by the 7 I’s: infection (pneumonia, UTI) insulin nonadherence/insufficiency (as can occur with pregnancy) initial presentation with DMI ischemia/infarct (myocardial, stroke, gut) inflammation (pancreatitis, cholecystitis) iatrogenic (glucocorticoids, dieuretics, surgery) intoxication (alcohol, atypical antipsychotics, cocaine) return to top Pathophysiology Insufficient insulin levels lead to a change in metabolism. An increase in fatty acid oxidation leads to ketones such as acetone, beta-hydroxybutyrate, and aceto-acetate. This, in turn, leads to an anion gap metabolic acidosis. Acidemia leads to a shift of potassium from cells into the extra-cellular space. Increased glucose production in liver leads to hyperglycemia and osmotic diuresis, with glycosuria and ketonuria. Dehyd Continue reading >>

Cerebral Edema In Children With Diabetic Ketoacidosis

Cerebral Edema In Children With Diabetic Ketoacidosis

Abstract Cerebral edema is the most frequent serious complication of diabetic ketoacidosis (DKA) in children, occurring in 1% to 5% of DKA episodes. The rates of mortality and permanent neurologic morbidity from this complication are high. The pathophysiologic mechanisms underlying DKA-related cerebral edema are unclear. A number of past and more recent studies have investigated biochemical and therapeutic risk factors for the development of cerebral edema. Recent studies have shown that a higher initial serum urea nitrogen concentration and lower initial partial pressure of carbon dioxide are associated with the development of cerebral edema. This and other information suggests that the pathophysiology of DKA-related cerebral edema may involve cerebral ischemia. Preview Unable to display preview. Download preview PDF. Continue reading >>

25-40% Of Newly Diagnosed Cases Present In Dka

25-40% Of Newly Diagnosed Cases Present In Dka

Case Scenario #1 What is your assessment? DKA exists when: Venous pH < 7.3 Serum bicarbonate < 15 mEq/dL Blood glucose > 300 mg/dL Presence of ketonemia/ketonuria How much fluid would you administer as a bolus? Would you administer bicarbonate? How much insulin would you administer? What IVF would you start? At what rate? * 10 - 20 cc/kg bolus of NS would be adequate. Though the patient is dehydrated (dry lips), his hemodynamics are good, with acceptable vitals and good perfusion. There would be no reason to administer more than 20 cc/kg fluids. While this patient is clearly acidemic, he is NOT in impending cardiovascular collapse and therefore there is no justification for the administration of bicarbonate. In fact, administration of bicarbonate has been associated with the development of cerebral edema. The “true†serum sodium is 143 133 + 0.016[700-100] Insulin is generally started at 0.1 u/kg/hr. Therefore, in this 30 kg patient, an insulin infusion of 3 u/hr of regular insulin should be initiated. IVF of NS should be started at ~ 2400 cc/m2/day, which is approximately 1.5 x maintenance Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Acute Complications Of Diabetes - Diabetic Ketoacidosis

Acute Complications Of Diabetes - Diabetic Ketoacidosis

- [Voiceover] Oftentimes we think of diabetes mellitus as a chronic disease that causes serious complications over a long period of time if it's not treated properly. However, the acute complications of diabetes mellitus are often the most serious, and can be potentially even life threatening. Let's discuss one of the acute complications of diabetes, known as diabetic ketoacidosis, or DKA for short, which can occur in individuals with type 1 diabetes. Now recall that type 1 diabetes is an autoimmune disorder. And as such, there's an autoimmune destruction of the beta cells in the pancreas, which prevents the pancreas from producing and secreting insulin. Therefore, there is an absolute insulin deficiency in type 1 diabetes. But what exactly does this mean for the body? To get a better understanding, let's think about insulin requirements as a balancing act with energy needs. Now the goal here is to keep the balance in balance. As the energy requirements of the body go up, insulin is needed to take the glucose out of the blood and store it throughout the body. Normally in individuals without type 1 diabetes, the pancreas is able to produce enough insulin to keep up with any amount of energy requirement. But how does this change is someone has type 1 diabetes? Well since their pancreas cannot produces as much insulin, they have an absolute insulin deficiency. Now for day-to-day activities, this may not actually cause any problems, because the small amount of insulin that is produced is able to compensate and keep the balance in balance. However, over time, as type 1 diabetes worsens, and less insulin is able to be produced, then the balance becomes slightly unequal. And this results in the sub-acute or mild symptoms of type 1 diabetes such as fatigue, because the body isn Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, And Preventable Safety Concern With Sglt2 Inhibitors

Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, And Preventable Safety Concern With Sglt2 Inhibitors

The Case At Hand Recently, the U.S. Food and Drug Administration (FDA) issued a Drug Safety Communication that warns of an increased risk of diabetic ketoacidosis (DKA) with uncharacteristically mild to moderate glucose elevations (euglycemic DKA [euDKA]) associated with the use of all the approved sodium–glucose cotransporter 2 (SGLT2) inhibitors (1). This Communication was based on 20 clinical cases requiring hospitalization captured between March 2013 and June 2014 in the FDA Adverse Event Reporting System database. The scarce clinical data provided suggested that most of the DKA cases were reported in patients with type 2 diabetes (T2D), for whom this class of agents is indicated; most likely, however, they were insulin-treated patients, some with type 1 diabetes (T1D). The FDA also identified potential triggering factors such as intercurrent illness, reduced food and fluid intake, reduced insulin doses, and history of alcohol intake. The following month, at the request of the European Commission, the European Medicines Agency (EMA) announced on 12 June 2015 that the Pharmacovigilance Risk Assessment Committee has started a review of all of the three approved SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin) to evaluate the risk of DKA in T2D (2). The EMA announcement claimed that as of May 2015 a total of 101 cases of DKA have been reported worldwide in EudraVigilance in T2D patients treated with SGLT2 inhibitors, with an estimated exposure over 0.5 million patient-years. No clinical details were provided except for the mention that “all cases were serious and some required hospitalisation. Although [DKA] is usually accompanied by high blood sugar levels, in a number of these reports blood sugar levels were only moderately increased” (2). Wit Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

Advanced Diabetic Ketoacidosis

Advanced Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a dangerous condition characterized by a severe rise in blood sugar or hyperglycemia, depleted bodily fluids, shock, and in some cases unconsciousness. Coma and even death may occur if DKA is left untreated or if it becomes more severe due to excessive vomiting. Symptoms of DKA In the early stages of DKA, the affected individual appears flushed and breathes rapidly and deeply. This is called hyperventilation. As the condition progresses, the skin may turn pale, cool and clammy, dehydration may begin to set in and the heart rate may become rapid and breathing shallow. Nausea, vomiting and severe abdominal cramps. Blurred vision Fruity or pungent smelling breath due to the presence of acetone and ketones in the breath. Pathophysiology Although DKA can occur in patients with type 2 diabetes, it mainly develops in people with type 1 diabetes who need to take insulin for their condition. If individuals do not receive insulin, they will develop DKA. If there is a shortage of insulin, the body fails to use glucose in the blood for energy and instead fats are broken down in the liver. When these fats are broken down, acidic compounds called ketones are produced as a by-product. These ketones build up in the body and eventually cause ketoacidosis. Aside from missed or inadequate doses of insulin, another common cause of DKA is infection or illness as this can raise the level of hormones that counteract the effects of insulin. In addition, the dehydration caused by major injury or surgery can raise levels of these hormones. Diagnosis and treatment Blood tests are performed to check the sugar levels and blood pH, which is classified as acidic if it is below the usual 7.3. Unlike non-ketotic hyperosmolar coma, in DKA the blood and urine levels of keto Continue reading >>

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

State of Ohio Overview of the diabetic ketoacidosis (DKA)/ hyperglycemic hyperosmolar state (HHS) episode of care CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. December 23, 2016 | 1 Overview of the diabetic ketoacidosis (DKA)/hyperglycemic hyperosmolar state (HHS) episode of care 1. CLINICAL OVERVIEW AND RATIONALE FOR DEVELOPMENT OF THE DKA/HHS EPISODE 1.1 Rationale for development of the DKA/HHS episode of care DKA and HHS are among the most serious acute complications of diabetes. Clinically, DKA and HHS differ only by the degree of dehydration and the severity of metabolic acidosis. Both require prompt diagnosis and treatment. According to the American Diabetes Association, DKA accounts for more than $1 of every $4 spent on direct care for adult patients with Type I diabetes, and $1 of every $2 spent on patients experiencing multiple morbidities.1 In the United States, approximately 145,000 hospitalizations occur for DKA each year with an average cost of $17,500 per patient.2 The direct and indirect total annual cost of hospitalizations is estimated to be $2.4 billion.3 While the hospitalization rate for HHS is less than one percent of all diabetes-related admissions, death occurs in an estimated 5-16 percent of these patients, a rate 10 times higher than that of DKA.4 The complex pathophysiology of both DKA and HHS requires careful selection of approaches to restore glycemic control and deficiencies in intravascular volume and electrolytes. Appropriate treatment also includes the diagnosis and management of the underlying precipitating event. Death in patients with DKA/HHS is typically caused by the und Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Course Summary Diabetic ketoacidosis is an acute complication of diabetes mellitus, which requires prompt, aggressive, treatment. Complications of diabetic ketoacidosis throughout the age spectrum and during pregnancy require a close evaluation of symptoms, testing, treatment and outcomes to treatment. Anyone with diabetes, regardless of age or gender, can develop ketoacidosis. Guidelines exist that guide diabetes health teams and clinical care of the diabetic patient. Appropriate and timely treatment can reduce diabetic ketoacidosis complications and patients can recover to full health. Course Format Homestudy Course Syllabus Introduction Epidemiology Glucose, Insulin, And Diabetes: A Brief Review Glucose and Energy Type 1 and Type 2 Diabetes Classification System: Out of Date? Pathophysiology Of DKA - Pathophysiology, Signs and Symptoms of DKA Precipitating Causes Of DKA Clinical Signs And Symptoms Of DKA Diagnosis Of DKA Laboratory Tests Hyperkalemia Hyponatremia Other Electrolytes Amylase and Lipase Hepatic Transaminases Leukocytosis Serum Osmolality Renal Function Studies Troponin Levels Euglycemic DKA Gestational Diabetes And DKA Atypical Antipsychotics And DKA Complications Of DKA - Children, DKA and Cerebral Edema XI. Treatment For Diabetic Ketoacidosis Laboratory Tests Fluid Replacement Electrolyte Imbalances Insulin Therapy Acid-Base Disturbances and Bicarbonate Therapy Continuing Care and Monitoring for Complications Treatment Of Cerebral Edema Clinical Care, Prevention and Education Poor Access to Medical Care Lack of Information Emotional Acceptance and Non-compliance Summary Continue reading >>

Chapter 220. Diabetic Ketoacidosis

Chapter 220. Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is an acute, life-threatening complication of diabetes mellitus. The incidence and prevalence of diabetes are rising; as of 2005, an estimated 7% of the U.S. population had diabetes. In patients age 60 or older, the prevalence is estimated to be 20.9%.1 DKA occurs predominately in patients with type 1 (insulin-dependent) diabetes mellitus, but unprovoked DKA can occur in newly diagnosed type 2 (non–insulin-dependent) diabetes mellitus, especially in blacks and Hispanics.2 Between 1993 and 2003, the yearly rate of ED visits for DKA per 10,000 U.S. population with diabetes was 64, with a trend toward an increased rate of visits among the black population compared with the white population.3 Europe has a comparable incidence. A better understanding of pathophysiology and an aggressive, uniform approach to diagnosis and management have reduced mortality to <5% of reported episodes in experienced centers.4 However, mortality is higher in the elderly due to underlying renal disease or coexisting infection and in the presence of coma or hypotension. DKA is a response to cellular starvation brought on by relative insulin deficiency and counterregulatory or catabolic hormone excess (Figure 220-1). Insulin is the only anabolic hormone produced by the endocrine pancreas and is responsible for the metabolism and storage of carbohydrates, fat, and protein. Counterregulatory hormones include glucagon, catecholamines, cortisol, and growth hormone. Complete or relative absence of insulin and the excess counterregulatory hormones result in hyperglycemia (due to excess production and underutilization of glucose), osmotic diuresis, prerenal azotemia, worsening hyperglycemia, ketone formation, and a wide-anion gap metabolic acidosis.4 Insulin deficiency. Patho Continue reading >>

More in ketosis