diabetestalk.net

Dka Management Algorithm

Management Of Diabetic Ketoacidosis

Management Of Diabetic Ketoacidosis

Diabetic ketoacidosis is an emergency medical condition that can be life-threatening if not treated properly. The incidence of this condition may be increasing, and a 1 to 2 percent mortality rate has stubbornly persisted since the 1970s. Diabetic ketoacidosis occurs most often in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus); however, its occurrence in patients with type 2 diabetes (formerly called non–insulin-dependent diabetes mellitus), particularly obese black patients, is not as rare as was once thought. The management of patients with diabetic ketoacidosis includes obtaining a thorough but rapid history and performing a physical examination in an attempt to identify possible precipitating factors. The major treatment of this condition is initial rehydration (using isotonic saline) with subsequent potassium replacement and low-dose insulin therapy. The use of bicarbonate is not recommended in most patients. Cerebral edema, one of the most dire complications of diabetic ketoacidosis, occurs more commonly in children and adolescents than in adults. Continuous follow-up of patients using treatment algorithms and flow sheets can help to minimize adverse outcomes. Preventive measures include patient education and instructions for the patient to contact the physician early during an illness. Diabetic ketoacidosis is a triad of hyperglycemia, ketonemia and acidemia, each of which may be caused by other conditions (Figure 1).1 Although diabetic ketoacidosis most often occurs in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus), more recent studies suggest that it can sometimes be the presenting condition in obese black patients with newly diagnosed type 2 diabetes (formerly called non–insulin-depe Continue reading >>

Treatment Of Diabetic Ketoacidosis In The Emergency Department Utilizing A Web Based Insulin Infusion Algorithm

Treatment Of Diabetic Ketoacidosis In The Emergency Department Utilizing A Web Based Insulin Infusion Algorithm

American Association of Clinical Endocrinologists (AACE) Annual Scientific & Clinical Congress Authors Joseph Aloi,1 Raymie McFarland,2 Margaret Bachand,3 Courtenay Harrison3 Ongoing efforts at improving quality metrics in the care of persons with diabetes frequently focus on avoiding unnecessary hospitalizations, decreasing length of stay and avoiding readmission to hospital following discharge. Our prior experience with Glucommander, a web based insulin dosing algorithm, in inpatient insulin protocols suggested that its use in the emergency department (ED) would be safe. We previously studied the effectiveness of the Glucommander system for the treatment of mild to moderate Diabetic Ketoacidosis (DKA) in the ED and reported early data on 15 patients. We now report a full 1 year experience with 35 patients studied. DKA is a frequent cause for hospital admissions – accounting for up to 8% of general medicine admissions in some hospital studies.4 Current standard treatment protocols involves use of intravenous insulin infusions monitored in the intensive care unit (ICU); raising both the cost and complexity of care. Methods 35 Patients seen in the ED diagnosed with DKA during the 2012 calendar year were reviewed. All patients were studied at a single site – Virginia Beach General Hospital (VGBH) a 300 bed community hospital within the Sentara healthcare system. Patients seen in the ED with either significant hyperglycemia (glucose >300 mg/dL) or DKA were placed on the Glucomander protocol. Patients were then monitored for readiness to be discharged or need for admission. Adult patients with blood glucose >250 mg/dL, a positive anion gap and/or ketonuria were eligible to participate. Patients with severe acidosis (pH <7.0 or serum bicarbonate <10 nmol/L), or a concomi Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Diabetes Technology & Therapeutics Authors Jagdeesh Ullal,1 Raymie McFarland,2 Margaret Bachand,3 Joseph Aloi4 Abstract Background Efforts at improving quality metrics in diabetes focus on minimizing adverse events and avoiding re-admissions to the hospital. Our experience with Glucommander (Glytec, Greenville, SC), a cloud-based insulin management software system, suggested that its use in the emergency department (ED) would be useful in treating patients with mild diabetic ketoacidosis (DKA). Materials and Methods Thirty-five patients seen in the ED with hyperglycemic crises and diagnosed with DKA during one calendar year were reviewed. A retrospective chart review was performed on patients who were placed on Glucommander for DKA management. We excluded patients with significant acidosis or concomitant medical illnesses. Results Initial average capillary glucose level was 487 + 68mg/dL, average time to target glucose was 5 h 11min, and rate of hypoglycemia (blood glucose level < 70mg/dL) was less than 0.3%. Sixteen patients treated with the protocol were discharged from the ED directly, and 19 were admitted. Patients were maintained for an average of 14 + 1 h on the Glucommander protocol. There was a significantly higher anion gap (P = 0.002) and lower serum bicarbonate level (P= 0.006) in the admitted group. We found very low evidence of re-admission (6%) within 30 days of discharge from the ED for DKA patients. No significant glucose-related adverse events were noted. Conclusions Use of Glucommander for guiding the insulin treatment of mild DKA in the ED can decrease admissions to the hospital for DKA by 45%. Low rates of hypoglycemia make this an option to improve efficiency of utilization of inpatient hospital beds. The cost savings for nonadmissions were estimate Continue reading >>

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

My Site - Chapter 15: Hyperglycemic Emergencies In Adults

My Site - Chapter 15: Hyperglycemic Emergencies In Adults

Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) should be suspected in ill patients with diabetes. If either DKA or HHS is diagnosed, precipitating factors must be sought and treated. DKA and HHS are medical emergencies that require treatment and monitoring for multiple metabolic abnormalities and vigilance for complications. A normal blood glucose does not rule out DKA in pregnancy. Ketoacidosis requires insulin administration (0.1 U/kg/h) for resolution; bicarbonate therapy should be considered only for extreme acidosis (pH7.0). Note to readers: Although the diagnosis and treatment of diabetic ketoacidosis (DKA) in adults and in children share general principles, there are significant differences in their application, largely related to the increased risk of life-threatening cerebral edema with DKA in children and adolescents. The specific issues related to treatment of DKA in children and adolescents are addressed in the Type 1 Diabetes in Children and Adolescents chapter, p. S153. Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) are diabetes emergencies with overlapping features. With insulin deficiency, hyperglycemia causes urinary losses of water and electrolytes (sodium, potassium, chloride) and the resultant extracellular fluid volume (ECFV) depletion. Potassium is shifted out of cells, and ketoacidosis occurs as a result of elevated glucagon levels and absolute insulin deficiency (in the case of type 1 diabetes) or high catecholamine levels suppressing insulin release (in the case of type 2 diabetes). In DKA, ketoacidosis is prominent, while in HHS, the main features are ECFV depletion and hyperosmolarity. Risk factors for DKA include new diagnosis of diabetes mellitus, insulin omission, infection, myocardial infarc Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

More in ketosis