diabetestalk.net

Dka Dehydration

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Dehydration In Children With Diabetic Ketoacidosis: A Prospective Study.

Dehydration In Children With Diabetic Ketoacidosis: A Prospective Study.

Abstract OBJECTIVES: To investigate the association between the degree of patient dehydration on presentation with diabetic ketoacidosis (DKA) and clinical and laboratory parameters obtained on admission. DESIGN: Prospective descriptive study. SETTING: A tertiary care children's hospital. PATIENTS: Thirty-nine paediatric patients (1 month-16 years) presenting with 42 episodes of DKA. INTERVENTION: Clinical and biochemical variables were collected on admission. Dehydration was calculated by measuring acute changes in body weight during the period of illness. All patients were treated according to a previously established protocol. MAIN OUTCOME MEASURES: Magnitude of dehydration, defined as % loss of body weight (LBW), was determined by the difference in body weight obtained at presentation and at discharge. The relationship between the magnitude of dehydration and the clinical assessment and biochemical parameters was examined. RESULTS: The median (25th-75th centiles) magnitude of dehydration at presentation was 5.7% (3.8-8.3%) (mean ± SD 6.8 ± 5%). Neither the initial clinical assessment nor the comprehensive biochemical profile at admission correlated with the magnitude of dehydration. Despite considerable variation in the degree of dehydration and biochemical disequilibrium, all patients recovered from DKA within 24 h with a standardised therapeutic approach. Furthermore, the rapidity of patient recovery did not correlate with the magnitude of dehydration on presentation or the amount of fluid administered (median (25th-75th centiles) 48.8 ml/kg (38.5-60.3)) in the first 12 h. CONCLUSION: The magnitude of dehydration in DKA is not reflected by either clinical or biochemical parameters. These findings need confirmation in larger studies. Continue reading >>

The Accuracy Of Clinical Assessment Of Dehydration During Diabetic Ketoacidosis In Childhood

The Accuracy Of Clinical Assessment Of Dehydration During Diabetic Ketoacidosis In Childhood

The objective of this study was to examine the accuracy of the assessment of clinical dehydration in children with type 1 diabetes and diabetic ketoacidosis (DKA). DKA remains the single most common cause of diabetes-related death in childhood (1). Accurate assessment and management of dehydration is the cornerstone of DKA treatment (1,2). The assessment of the degree of dehydration has traditionally been according to clinical criteria including peripheral tissue perfusion and indicators of hemodynamic status (3). The clinical assessment of dehydration in children in common nonacidotic states (e.g., gastroenteritis) has been previously shown (4) to overestimate the degree of dehydration by ∼3.2%. There have been no comparable studies in either DKA or any other form of metabolic acidosis. RESEARCH DESIGN AND METHODS We studied a random convenience sample of 37 children with type 1 diabetes, newly or previously diagnosed, who presented to the Royal Children’s Hospital, Melbourne, with DKA. The patients were all <18 years of age and presented to the emergency department at Royal Children’s Hospital between 1996 and 2000. The study entry criteria were pH <7.30 (capillary, venous, or arterial) and/or bicarbonate <15 mmol/l and ketones in the urine on dipstick testing. The following information was recorded by the primary assessing doctor: newly diagnosed or established diabetes, age, sex, date and time seen, heart rate, respiratory rate, blood pressure, pale and/or cool hands and feet, peripheral capillary refill time, reduced skin turgor, level of consciousness (on a rating scale of one to eight), sunken eyes, sunken fontanelle, dry tongue, Kussmaul breathing, blood glucose level, and estimated degree of dehydration (clinical assessment). A second emergency department Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Author: Osama Hamdy, MD, PhD; Chief Editor: Romesh Khardori, MD, PhD, FACP more... Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Malaise, generalized weakness, and fatigability Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia Rapid weight loss in patients newly diagnosed with type 1 diabetes History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: Glaser NS, Marcin JP, Wootton-Gorges SL, et al. Correlation of clinical and biochemical findings with diabetic ketoacidosis-related cerebral edema in children using magnetic resonance diffusion-weighted imaging. J Pediatr. 2008 Jun 25. [Medline] . Umpierrez GE, Jones S, Smiley D, et al. Insulin analogs versus human insulin in the treatment of patients with diabetic ketoacidosis: a randomized controlled trial. Diabetes Care. 2009 Jul. 32(7):1164-9. [Medline] . [Full Text] . Herrington WG, Nye HJ, Hammersley MS, Watkinson PJ. Are arterial and venous samples clinically equivalent for the estimation Continue reading >>

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic ketoacidosis definition and facts Diabetic ketoacidosis is a life-threatening complication of type 1 diabetes (though rare, it can occur in people with type 2 diabetes) that occurs when the body produces high levels of ketones due to lack of insulin. Diabetic ketoacidosis occurs when the body cannot produce enough insulin. The signs and symptoms of diabetic ketoacidosis include Risk factors for diabetic ketoacidosis are type 1 diabetes, and missing insulin doses frequently, or being exposed to a stressor requiring higher insulin doses (infection, etc). Diabetic ketoacidosis is diagnosed by an elevated blood sugar (glucose) level, elevated blood ketones and acidity of the blood (acidosis). The treatment for diabetic ketoacidosis is insulin, fluids and electrolyte therapy. Diabetic ketoacidosis can be prevented by taking insulin as prescribed and monitoring glucose and ketone levels. The prognosis for a person with diabetic ketoacidosis depends on the severity of the disease and the other underlying medical conditions. Diabetic ketoacidosis (DKA) is a severe and life-threatening complication of diabetes. Diabetic ketoacidosis occurs when the cells in our body do not receive the sugar (glucose) they need for energy. This happens while there is plenty of glucose in the bloodstream, but not enough insulin to help convert glucose for use in the cells. The body recognizes this and starts breaking down muscle and fat for energy. This breakdown produces ketones (also called fatty acids), which cause an imbalance in our electrolyte system leading to the ketoacidosis (a metabolic acidosis). The sugar that cannot be used because of the lack of insulin stays in the bloodstream (rather than going into the cell and provide energy). The kidneys filter some of the glucose (suga Continue reading >>

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitrogen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocardiography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in children. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symptoms to prevent it. Patient education should include information on how to adjust insulin during times of illness and how to monitor glucose and ketone levels, as well as i Continue reading >>

How Dka Happens And What To Do About It

How Dka Happens And What To Do About It

Certified Diabetes Educator Gary Scheiner offers an overview of diabetic ketoacidosis. (excerpted from Think Like A Pancreas: A Practical Guide to Managing Diabetes With Insulin by Gary Scheiner MS, CDE, DaCapo Press, 2011) Diabetic Ketoacidosis (DKA) is a condition in which the blood becomes highly acidic as a result of dehydration and excessive ketone (acid) production. When bodily fluids become acidic, some of the body’s systems stop functioning properly. It is a serious condition that will make you violently ill and it can kill you. The primary cause of DKA is a lack of working insulin in the body. Most of the body’s cells burn primarily sugar (glucose) for energy. Many cells also burn fat, but in much smaller amounts. Glucose happens to be a very “clean” form of energy—there are virtually no waste products left over when you burn it up. Fat, on the other hand, is a “dirty” source of energy. When fat is burned, there are waste products produced. These waste products are called “ketones.” Ketones are acid molecules that can pollute the bloodstream and affect the body’s delicate pH balance if produced in large quantities. Luckily, we don’t tend to burn huge amounts of fat at one time, and the ketones that are produced can be broken down during the process of glucose metabolism. Glucose and ketones can “jump into the fire” together. It is important to have an ample supply of glucose in the body’s cells. That requires two things: sugar (glucose) in the bloodstream, and insulin to shuttle the sugar into the cells. A number of things would start to go wrong if you have no insulin in the bloodstream: Without insulin, glucose cannot get into the body’s cells. As a result, the cells begin burning large amounts of fat for energy. This, of course, Continue reading >>

Differential Effects Of Fasting And Dehydration In The Pathogenesis Of Diabetic Ketoacidosis.

Differential Effects Of Fasting And Dehydration In The Pathogenesis Of Diabetic Ketoacidosis.

Abstract Glycemia varies widely in patients with diabetic ketoacidosis (DKA), with plasma glucose concentrations between 10 to 50 mmol/L commonly encountered. The mechanism of this glycemic variability is uncertain. Our study examined the differential effects of fasting and dehydration on hyperglycemia induced by withdrawal of insulin in type 1 diabetes. To evaluate the respective roles of dehydration and fasting in the pathogenesis of DKA, 25 subjects with type 1 diabetes were studied during 5 hours of insulin withdrawal before (control) and after either 32 hours of fasting (n = 10) or dehydration of 4.1% +/- 2.0% of baseline body weight (n = 15). Samples were obtained every 30 minutes during insulin withdrawal for substrate and counterregulatory hormone levels and rates of glucose production and disposal. Fasting resulted in reduced plasma glucose concentrations compared with the control study, while dehydration resulted in increased plasma glucose concentrations compared with the control study (P < .001). Glucose production and disposal were decreased during the fasting study and increased during the dehydration study compared with the control study. Glucagon concentrations and rates of development of ketosis and metabolic acidosis were increased during both fasting and dehydration compared with control. These data suggest that fasting and dehydration have differential effects on glycemia during insulin deficiency, with dehydration favoring the development of hyperglycemia and fasting resulting in reduced glucose concentrations. This finding is probably attributable to the differing effect of these conditions on endogenous glucose production, as well as to differences in substrate availability and counterregulatory hormone concentrations. The severity of pre-existing Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Dehydration And Diabetes

Dehydration And Diabetes

Tweet People with diabetes have an increased risk of dehydration as high blood glucose levels lead to decreased hydration in the body. Diabetes insipidus, a form of diabetes that is not linked with high blood sugar levels, also carries a higher risk of dehydration. Symptoms of dehydration The symptoms of dehydration include: Thirst Headache Dry mouth and dry eyes Dizziness Tiredness Dark yellow coloured urine Symptoms of severe dehydration Low blood pressure Sunken eyes A weak pulse and/or rapid heartbeat Feeling confused Lethargy Causes and contributory factors of dehydration The following factors can contribute to dehydration. Having more of these factors present at one time can raise the risk of dehydration: Dehydration and blood glucose levels If our blood glucose levels are higher than they should be for prolonged periods of time, our kidneys will attempt to remove some of the excess glucose from the blood and excrete this as urine. Whilst the kidneys filter the blood in this way, water will also be removed from the blood and will need replenishing. This is why we tend to have increased thirst when our blood glucose levels run too high. If we drink water, we can help to rehydrate the blood. The other method the body uses is to draw on other available sources of water from within the body, such as saliva, tears and taking stored water from cells of the body. This is why we may experience a dry mouth and dry eyes when our blood glucose levels are high. If we do not have access to drink water, the body will find it difficult to pass glucose out of the blood via urine and can result in further dehydration as the body seeks to find water from our body's cells. Treating dehydration Dehydration can be treated by taking on board fluids. Water is ideal because it has no add Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketoacidosis (DKA) is a dangerous complication of diabetes caused by a lack of insulin in the body. Diabetic ketoacidosis occurs when the body is unable to use blood sugar (glucose) because there isn't enough insulin. Instead, it breaks down fat as an alternative source of fuel. This causes a build-up of a by-product called ketones. Most cases of diabetic ketoacidosis occur in people with type 1 diabetes, although it can also be a complication of type 2 diabetes. Symptoms of diabetic ketoacidosis include: passing large amounts of urine feeling very thirsty vomiting abdominal pain Seek immediate medical assistance if you have any of these symptoms and your blood sugar levels are high. Read more about the symptoms of diabetic ketoacidosis. Who is affected by diabetic ketoacidosis? Diabetic ketoacidosis is a relatively common complication in people with diabetes, particularly children and younger adults who have type 1 diabetes. Younger children under four years of age are thought to be most at risk. In about 1 in 4 cases, diabetic ketoacidosis develops in people who were previously unaware they had type 1 diabetes. Diabetic ketoacidosis accounts for around half of all diabetes-related hospital admissions in people with type 1 diabetes. Diabetic ketoacidosis triggers These include: infections and other illnesses not keeping up with recommended insulin injections Read more about potential causes of diabetic ketoacidosis. Diagnosing diabetic ketoacidosis This is a relatively straightforward process. Blood tests can be used to check your glucose levels and any chemical imbalances, such as low levels of potassium. Urine tests can be used to estimate the number of ketones in your body. Blood and urine tests can also be used to check for an underlying infec Continue reading >>

More in ketosis