diabetestalk.net

Dka Algorithm

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Diabetes Technology & Therapeutics Authors Jagdeesh Ullal,1 Raymie McFarland,2 Margaret Bachand,3 Joseph Aloi4 Abstract Background Efforts at improving quality metrics in diabetes focus on minimizing adverse events and avoiding re-admissions to the hospital. Our experience with Glucommander (Glytec, Greenville, SC), a cloud-based insulin management software system, suggested that its use in the emergency department (ED) would be useful in treating patients with mild diabetic ketoacidosis (DKA). Materials and Methods Thirty-five patients seen in the ED with hyperglycemic crises and diagnosed with DKA during one calendar year were reviewed. A retrospective chart review was performed on patients who were placed on Glucommander for DKA management. We excluded patients with significant acidosis or concomitant medical illnesses. Results Initial average capillary glucose level was 487 + 68mg/dL, average time to target glucose was 5 h 11min, and rate of hypoglycemia (blood glucose level < 70mg/dL) was less than 0.3%. Sixteen patients treated with the protocol were discharged from the ED directly, and 19 were admitted. Patients were maintained for an average of 14 + 1 h on the Glucommander protocol. There was a significantly higher anion gap (P = 0.002) and lower serum bicarbonate level (P= 0.006) in the admitted group. We found very low evidence of re-admission (6%) within 30 days of discharge from the ED for DKA patients. No significant glucose-related adverse events were noted. Conclusions Use of Glucommander for guiding the insulin treatment of mild DKA in the ED can decrease admissions to the hospital for DKA by 45%. Low rates of hypoglycemia make this an option to improve efficiency of utilization of inpatient hospital beds. The cost savings for nonadmissions were estimate Continue reading >>

My Site - Chapter 15: Hyperglycemic Emergencies In Adults

My Site - Chapter 15: Hyperglycemic Emergencies In Adults

Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) should be suspected in ill patients with diabetes. If either DKA or HHS is diagnosed, precipitating factors must be sought and treated. DKA and HHS are medical emergencies that require treatment and monitoring for multiple metabolic abnormalities and vigilance for complications. A normal blood glucose does not rule out DKA in pregnancy. Ketoacidosis requires insulin administration (0.1 U/kg/h) for resolution; bicarbonate therapy should be considered only for extreme acidosis (pH7.0). Note to readers: Although the diagnosis and treatment of diabetic ketoacidosis (DKA) in adults and in children share general principles, there are significant differences in their application, largely related to the increased risk of life-threatening cerebral edema with DKA in children and adolescents. The specific issues related to treatment of DKA in children and adolescents are addressed in the Type 1 Diabetes in Children and Adolescents chapter, p. S153. Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) are diabetes emergencies with overlapping features. With insulin deficiency, hyperglycemia causes urinary losses of water and electrolytes (sodium, potassium, chloride) and the resultant extracellular fluid volume (ECFV) depletion. Potassium is shifted out of cells, and ketoacidosis occurs as a result of elevated glucagon levels and absolute insulin deficiency (in the case of type 1 diabetes) or high catecholamine levels suppressing insulin release (in the case of type 2 diabetes). In DKA, ketoacidosis is prominent, while in HHS, the main features are ECFV depletion and hyperosmolarity. Risk factors for DKA include new diagnosis of diabetes mellitus, insulin omission, infection, myocardial infarc Continue reading >>

Improving Care For Pediatric Diabetic Ketoacidosis

Improving Care For Pediatric Diabetic Ketoacidosis

Abstract OBJECTIVE: We sought to create and implement recommendations from an evidence-based pathway for hospital management of pediatric diabetic ketoacidosis (DKA) and to sustain improvement. We hypothesized that development and utilization of standard work for inpatient care of DKA would lead to reduction in hypokalemia and improvement in outcome measures. METHODS: Development involved systematic review of published literature by a multidisciplinary team. Implementation included multidisciplinary feedback, hospital-wide education, daily team huddles, and development of computer decision support and electronic order sets. RESULTS: Pathway-based order sets forced clinical pathway adherence; yet, variations in care persisted, requiring ongoing iterative review and pathway tool adjustment. Quality improvement measures have identified barriers and informed subsequent adjustments to interventions. We compared 281 patients treated postimplementation with 172 treated preimplementation. Our most notable findings included the following: (1) monitoring of serum potassium concentrations identified unanticipated hypokalemia episodes, not recognized before standard work implementation, and earlier addition of potassium to fluids resulted in a notable reduction in hypokalemia; (2) improvements in insulin infusion management were associated with reduced duration of ICU stay; and (3) with overall improved DKA management and education, cerebral edema occurrence and bicarbonate use were reduced. We continue to convene quarterly meetings, review cases, and process ongoing issues with system-based elements of implementing the recommendations. CONCLUSIONS: Our multidisciplinary development and implementation of an evidence-based pathway for DKA have led to overall improvements in care. We Continue reading >>

Children's Hospital Of Philadelphia

Children's Hospital Of Philadelphia

If you have questions about any of the clinical pathways or about the process of creating a clinical pathway please contact us. ©2017 by Children's Hospital of Philadelphia, all rights reserved. Use of this site is subject to the Terms of Use. The clinical pathways are based upon publicly available medical evidence and/or a consensus of medical practitioners at The Children’s Hospital of Philadelphia (“CHOP”) and are current at the time of publication. These clinical pathways are intended to be a guide for practitioners and may need to be adapted for each specific patient based on the practitioner’s professional judgment, consideration of any unique circumstances, the needs of each patient and their family, and/or the availability of various resources at the health care institution where the patient is located. Accordingly, these clinical pathways are not intended to constitute medical advice or treatment, or to create a doctor-patient relationship between/among The Children’s Hospital of Philadelphia (“CHOP”), its physicians and the individual patients in question. CHOP does not represent or warrant that the clinical pathways are in every respect accurate or complete, or that one or more of them apply to a particular patient or medical condition. CHOP is not responsible for any errors or omissions in the clinical pathways, or for any outcomes a patient might experience where a clinician consulted one or more such pathways in connection with providing care for that patient. Continue reading >>

68..............................................................................................................................................................................navc Clinician’s Brief / April 2011 / Diagnostic Tree

68..............................................................................................................................................................................navc Clinician’s Brief / April 2011 / Diagnostic Tree

1. IV Isotonic Crystalloid Therapy • Shock fluid therapy is warranted if cardiovascular instability is present: Full shock dose of fluids is 90 mL/kg; start with ¼ to 1/3 dose and reassess until stable • Correct dehydration, provide maintenance needs, and replace ongoing losses over 6 to 24 hours: - % dehydration × body weight (kg) × 1000 plus - 20 mL/kg/day (insensible losses) plus - 20 to 40 mL/kg/day (maintenance sensible losses) plus - Account for vomiting, diarrhea, & polyuria (ongoing sensible losses) Alice Huang, VMD, & J. Catharine Scott-Moncrieff, Vet MB, MS, MA, Diplomate ACVIM & ECVIM Purdue University Canine Diabetic Ketoacidosis D i a gno s t i c Tre e / ENDOCRINOLOGY Peer Reviewed Physical Examination • Polyuria • Weight loss • Polydipsia • Vomiting • Polyphagia • Lethargy Patient may have only 1 or more of these signs. Laboratory Results • Blood glucose (BG): Hyperglycemia (> 200 mg/dL) • Blood gas (venous or arterial): Metabolic acidosis • Urine dipstick: Glucosuria; ketonuria or ketonemia Serum ketones can be measured if urine is unavailable. Diabetic Ketoacidosis Treatment 2. Electrolyte Supplementation (see Table 1, page 70) • Monitor serum potassium Q 4–6 H until within reference interval and stable; then Q 12–24 H • Monitor serum phosphorus Q 4–6 H until > 1.5; then Q 6–24 H • When supplementing potassium and phosphorus concurrently, take into account the amount of potassium contained in the potassium phosphate • Consider magnesium supplementation in instances of refractory hypokalemia 3. Regular Insulin • Continuous rate infusion (CRI) protocol:1 - Add 2.2 U/kg of regular insulin to 250 mL of 0.9% saline - Allow 50 Continue reading >>

What Is The Nursing Intervention For Diabetic Ketoacidosis?

What Is The Nursing Intervention For Diabetic Ketoacidosis?

My response will be geared towards the emergent presentation amd treatment. 90+ % of the time the blood sugar will be above 500 on your glucometer. Do not let this fool You! Even if it's over 2000 (my highest treated fingerstick glucose was 2042 which wasn't even this patients personal highest) you don't need to worry about administering insulin for about 1–2 hour. You first need great IV access. Being a soon to be ICU admit, I tried my best to give them at least an 18 g and a 20 g preferably not in the AC but access is better than an inconvenient location. These patients are dehydrated so get ready to administer 2 up to 4 liters of fluid. Truthfully Lactated ringers is coming en vogue as NS can worsen the acidosis by raising the chloride levels. With labs pending (electrolytes are the important labs and either an ABG or a VBG… yes a venous gas gives equally treatable results and causes much less pain). If the potassium is above the recommended value you will be able to start an insulin drip and in case you are too in the moment to remember — giving IV insulin will tank a potassium within 30 min or less so replace potassium before administering insulin in this situation!! There are a few options for insulin replacement, some use a computerized algorithm while other base insulin dosage on patient weight ( kg x .01 units/kg/hr is one example) with hourly glucose checks. While administering insulin, if they begin having seizures you will need to give IV glucose, yes it's counter intuitive but it's necessary. Regardless, go with your facilities recommendations. Ensure quality oxygenation/ventilation because the body will do its best to correct the condition itself but sometimes the patient must be intubated. All this to say this- the goal of treatment is to: hydrate, Continue reading >>

Chapter 11: Diabetic Ketoacidosis In Pregnancy

Chapter 11: Diabetic Ketoacidosis In Pregnancy

Despite recent advances in the evaluation and medical treatment of diabetes in pregnancy, diabetic ketoacidosis (DKA) remains a matter of significant concern. The fetal loss rate in most contemporary series has been estimated to range from 10% to 25%. Fortunately, since the advent and implementation of insulin therapy, the maternal mortality rate has declined to 1% or less. In order to favorably influence the outcome in these high-risk patients, it is imperative that the obstetrician/provider be familiar with the basics of the pathophysiology, diagnosis, and treatment of DKA in pregnancy. DKA is characterized by hyperglycemia and accelerated ketogenesis. Both a lack of insulin and an excess of glucagon and other counter-regulatory hormones significantly contribute to these problems and their resultant clinical manifestations. Glucose normally enters the cell secondary to the effects of insulin. The cell then may use glucose for nutrition and energy production. When insulin is lacking, glucose fails to enter the cell. The cell responds to this starvation by facilitating the release of counter-regulatory hormones, including glucagon, catecholamines, and cortisol. These counter-regulatory hormones are responsible for providing the cell with an alternative substrate for nutrition and energy production. By the process of gluconeogenesis, fatty acids from adipose tissue are broken down by hepatocytes to ketones (acetone, acetoacetate, and β-hydroxybutyrate [BHB] = ketone bodies), which are then used by the body cells for nutrition and energy production (Fig. 11-1). The lack of insulin also contributes to increased lipolysis and decreased reutilization of free fatty acids, thereby providing more substrate for hepatic ketogenesis. A basic review of the biochemistry involving D Continue reading >>

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Background Diabetic ketoacidosis (DKA), once thought to typify type 1 diabetes mellitus, has been reported to affect individuals with type 2 diabetes mellitus. An analysis and overview of the different clinical and biochemical characteristics of DKA that might be predicted between patients with type 1 and type 2 diabetes is needed. Methods We reviewed 176 admissions of patients with moderate-to-severe DKA. Patients were classified as having type 1 or type 2 diabetes based on treatment history and/or autoantibody status. Groups were compared for differences in symptoms, precipitants, vital statistics, biochemical profiles at presentation, and response to therapy. Results Of 138 patients admitted for moderate-to-severe DKA, 30 had type 2 diabetes. A greater proportion of the type 2 diabetes group was Latino American or African American (P<.001). Thirty-five admissions (19.9%) were for newly diagnosed diabetes. A total of 85% of all admissions involved discontinuation of medication use, 69.2% in the type 2 group. Infections were present in 21.6% of the type 1 and 48.4% of the type 2 diabetes admissions. A total of 21% of patients with type 1 diabetes and 70% with type 2 diabetes had a body mass index greater than 27. Although the type 1 diabetes group was more acidotic (arterial pH, 7.21 ± 0.12 vs 7.27 ± 0.08; P<.001), type 2 diabetes patients required longer treatment periods (36.0 ± 11.6 vs 28.9 ± 8.9 hours, P = .01) to achieve ketone-free urine. Complications from therapy were uncommon. Conclusions A significant proportion of DKA occurs in patients with type 2 diabetes. The time-tested therapy for DKA of intravenous insulin with concomitant glucose as the plasma level decreases, sufficient fluid and electrolyte replacement, and attention to associated problems remai Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Use Of A Computer-based Insulin Infusion Algorithm To Treat Diabetic Ketoacidosis In The Emergency Department

Abstract Background: Efforts at improving quality metrics in diabetes focus on minimizing adverse events and avoiding re-admissions to the hospital. Our experience with Glucommander™ (Glytec, Greenville, SC), a cloud-based insulin management software system, suggested that its use in the emergency department (ED) would be useful in treating patients with mild diabetic ketoacidosis (DKA). Materials and methods: Thirty-five patients seen in the ED with hyperglycemic crises and diagnosed with DKA during one calendar year were reviewed. A retrospective chart review was performed on patients who were placed on Glucommander™ for DKA management. We excluded patients with significant acidosis or concomitant medical illnesses. Results: Initial average capillary glucose level was 487 ± 68 mg/dL, average time to target glucose was 5 h 11 min, and rate of hypoglycemia (blood glucose level <70 mg/dL) was less than 0.3%. Sixteen patients treated with the protocol were discharged from the ED directly, and 19 were admitted. Patients were maintained for an average of 14 ± 1 h on the Glucommander™ protocol. There was a significantly higher anion gap (P = 0.002) and lower serum bicarbonate level (P = 0.006) in the admitted group. We found very low evidence of re-admission (6%) within 30 days of discharge from the ED for DKA patients. No significant glucose-related adverse events were noted. Conclusions: Use of Glucommander™ for guiding the insulin treatment of mild DKA in the ED can decrease admissions to the hospital for DKA by 45%. Low rates of hypoglycemia make this an option to improve efficiency of utilization of inpatient hospital beds. The cost savings for nonadmissions were estimated at $78,000 over the 12 months of the study. Our results suggest that Glucommander™ is Continue reading >>

Episode 63 – Pediatric Dka

Episode 63 – Pediatric Dka

Pediatric DKA was identified as one of key diagnoses that we need to get better at managing in a massive national needs assessment conducted by the fine folks at TREKK – Translating Emergency Knowledge for Kids – one of EM Cases’ partners who’s mission is to improve the care of children in non-pediatric emergency departments across the country. You might be wondering – why was DKA singled out in this needs assessment? It turns out that kids who present to the ED in DKA without a known history of diabetes, can sometimes be tricky to diagnose, as they often present with vague symptoms. When a child does have a known history of diabetes, and the diagnosis of DKA is obvious, the challenge turns to managing severe, life-threatening DKA, so that we avoid the many potential complications of the DKA itself as well as the complications of treatment – cerebral edema being the big bad one. The approach to these patients has evolved over the years, even since I started practicing, from bolusing insulin and super aggressive fluid resuscitation to more gentle fluid management and delayed insulin drips, as examples. There are subtleties and controversies in the management of DKA when it comes to fluid management, correcting serum potassium and acidosis, preventing cerebral edema, as well as airway management for the really sick kids. In this episode we‘ll be asking our guest pediatric emergency medicine experts Dr. Sarah Reid, who you may remember from her powerhouse performance on our recent episodes on pediatric fever and sepsis, and Dr. Sarah Curtis, not only a pediatric emergency physician, but a prominent pediatric emergency researcher in Canada, about the key historical and examination pearls to help pick up this sometimes elusive diagnosis, what the value of serum Continue reading >>

A Unified Hyperglycemia And Diabetic Ketoacidosis (dka) Insulin Infusion Protocol Based On An Excel Algorithm

A Unified Hyperglycemia And Diabetic Ketoacidosis (dka) Insulin Infusion Protocol Based On An Excel Algorithm

Abstract: Objective – An insulin infusion protocol (IIP) was instituted in medical and surgical ICUs for post-cardiac surgery stress hyperglycemia (SH), diabetes hyperglycemia (DH), and DKA. Prior to 2014, Saint Louis University Hospital (SLUH) used a proportionate delivery protocol which required hourly Insulin Infusin Rate (IIR) recalculation based on BG change. A separate protocol was followed for diabetic ketoacidosis (DKA). A unified ICU protocol was designed in 2013 and implemented in 2014 for treatment of DH, DKA, and post-cardiothoracic surgery SH to meet SCIP criteria. The protocol utilized conventional diabetes management techniques, i.e. 1) body weight based, 2) designed with the concept of basal plus correction factor, 3) pre-calculated insulin doses , 4) maximum IIR at higher BG and 6) progressively decreasing IIR as BG approaches designated target range (DTR) to limit hypoglycemia Method - The IIP was assessed during one month for all patients in ICUs. The IIP was developed in Excel and our project is IRB exempt. The IIR is higher at BG >160mg/dL (0.5units/ kg/24 hour, defined as “Phase 1” to lower hyperglycemia), and decreases progressively as BG decline. There is an abrupt decrease in the IIR at a threshold BG of 160mg/dL, (rate 0.3units/kg/ 24hours defined as “Phase 2”, maintenance rate) to sustain BG between a DTR, 120 mg/dL-180 mg/dL. An acceptable target range (ATR) is considered between 100mg/dL-200mg/dL. A correction factor for BG >120mg/dL is added to the IIR by estimating Total Daily Dose (TDD) of insulin. IIR is pre-calculated and stored in the electronic medical record system (EPIC) in weight based columns from 40kg through 150kg with increments of 10 kg. Nurses titrate IIR hourly based only on the current BG. When BG has been in targ Continue reading >>

Hyperglycemic Crises In Adult Patients With Diabetes

Hyperglycemic Crises In Adult Patients With Diabetes

Diabetic ketoacidosis (DKA) and the hyperosmolar hyperglycemic state (HHS) are the two most serious acute metabolic complications of diabetes. DKA is responsible for more than 500,000 hospital days per year (1,2) at an estimated annual direct medical expense and indirect cost of 2.4 billion USD (2,3). Table 1 outlines the diagnostic criteria for DKA and HHS. The triad of uncontrolled hyperglycemia, metabolic acidosis, and increased total body ketone concentration characterizes DKA. HHS is characterized by severe hyperglycemia, hyperosmolality, and dehydration in the absence of significant ketoacidosis. These metabolic derangements result from the combination of absolute or relative insulin deficiency and an increase in counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). Most patients with DKA have autoimmune type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness such as trauma, surgery, or infections. This consensus statement will outline precipitating factors and recommendations for the diagnosis, treatment, and prevention of DKA and HHS in adult subjects. It is based on a previous technical review (4) and more recently published peer-reviewed articles since 2001, which should be consulted for further information. Recent epidemiological studies indicate that hospitalizations for DKA in the U.S. are increasing. In the decade from 1996 to 2006, there was a 35% increase in the number of cases, with a total of 136,510 cases with a primary diagnosis of DKA in 2006—a rate of increase perhaps more rapid than the overall increase in the diagnosis of diabetes (1). Most patients with DKA were between the ages of 18 and 44 years (56%) and 45 and 65 years (24%), with only 18% of patie Continue reading >>

Safety And Efficacy Of An Algorithm-based Protocol In The Management Of Diabetic Ketoacidosis

Safety And Efficacy Of An Algorithm-based Protocol In The Management Of Diabetic Ketoacidosis

Objective: To determine the efficacy of an algorithm-based protocol to manage diabetic ketoacidosis (DKA). Methods: Our study is a retrospective chart review of patients with DKA managed before and after implementation of an algorithm-based DKA protocol at a tertiary care hospital. Results: There were 88 patients managed 1 year prior (control group) and 70 patients managed one year after (study group) implementation of the algorithm-based DKA protocol. The DKA resolution time was significantly shorter (11.5 [8.1 to 17.1] hours versus 8.5 [5.8 to 12] hours; P = 0.008) and the hypoglycemic events were significantly less (P = 0.042) in the study group in comparison with the control group. There was no difference in the potassium abnormalities and rate of decline of glucose. A survey on a scale of 1 to 10 found the majority of physicians and nurses rated the protocol as safe (83%) and effective (96%). Fifty-four percent of the nurses, however, found the protocol difficult to follow. Conclusion: Our study showed that implementation of an algorithm-based protocol reduced the DKA resolution time and hypoglycemic events without compromising electrolyte imbalance, and was associated with improved clinical measures of DKA management. Continue reading >>

Canine Diabetic Ketoacidosis

Canine Diabetic Ketoacidosis

Use this algorithm to diagnose and treat diabetic ketoacidosis in dogs. CANINE DIABETIC KETOACIDOSIS • Alice Huang & J. Catharine Scott-Moncrieff Material from Clinician’s Brief may not be reproduced, distributed, or used in whole or in part without prior permission of Educational Concepts, LLC. For questions or inquiries please contact us. Continue reading >>

More in ketosis