diabetestalk.net

Difference Between Acidosis And Alkalosis Symptoms

Disorders Of Acid-base Balance

Disorders Of Acid-base Balance

Module 10: Fluid, Electrolyte, and Acid-Base Balance By the end of this section, you will be able to: Identify the three blood variables considered when making a diagnosis of acidosis or alkalosis Identify the source of compensation for blood pH problems of a respiratory origin Identify the source of compensation for blood pH problems of a metabolic/renal origin Normal arterial blood pH is restricted to a very narrow range of 7.35 to 7.45. A person who has a blood pH below 7.35 is considered to be in acidosis (actually, physiological acidosis, because blood is not truly acidic until its pH drops below 7), and a continuous blood pH below 7.0 can be fatal. Acidosis has several symptoms, including headache and confusion, and the individual can become lethargic and easily fatigued. A person who has a blood pH above 7.45 is considered to be in alkalosis, and a pH above 7.8 is fatal. Some symptoms of alkalosis include cognitive impairment (which can progress to unconsciousness), tingling or numbness in the extremities, muscle twitching and spasm, and nausea and vomiting. Both acidosis and alkalosis can be caused by either metabolic or respiratory disorders. As discussed earlier in this chapter, the concentration of carbonic acid in the blood is dependent on the level of CO2 in the body and the amount of CO2 gas exhaled through the lungs. Thus, the respiratory contribution to acid-base balance is usually discussed in terms of CO2 (rather than of carbonic acid). Remember that a molecule of carbonic acid is lost for every molecule of CO2 exhaled, and a molecule of carbonic acid is formed for every molecule of CO2 retained. Figure 1. Symptoms of acidosis affect several organ systems. Both acidosis and alkalosis can be diagnosed using a blood test. Metabolic Acidosis: Primary Bic Continue reading >>

Systemic Alkalosis & Systemic Acidosis

Systemic Alkalosis & Systemic Acidosis

Artificial people consume artificial medications and eat artificial foods. A real person eats real foods and real nutrients from nature. Is too much Alkaline Water making the public sicker? Is Alkaline Water an excessive intake of alkaline substances? Alkalosis refers to, symptomatic of an unusually high alkalinity of the blood and other body tissues. Systemic Alkalosis: Systemic means, affecting the entire system, affecting the body as a whole, that is, relating to an entire system, spread throughout. Metabolic Alkalosis: Alkalosis resulting from hydrogen-ion loss, or an excessive intake of alkaline substances. Medicine refers to alkalosis as Metabolic Alkalosis, that is, a cluster of conditions. I will refer to the subject as Systemic Alkalosis, that is, alkaline water affecting the body as a whole, relating to the entire system. I am not entering into the nutritional differences between acid and alkaline foods and nutrition, as that is another subject and too long to write here. Companies (added with, multi-marketing companies), are promoting, marketing and advertising their Alkaline Water with considerable gusto. Because of their own agenda, it’s in their best interest to list the side-effects of too much acid within the body, however, with Failure to Disclose and Misrepresentation, they do not list the appalling side-effects of Systemic Alkalosis. Have these companies done their research on this? Are they aware that an excessive intake of alkaline within the body and its tissues can result in side-effects, something that their customers would know nothing about and they have not advised their customers of this. Systemic Acidosis is relative to sodium in the bloodstream, and Systemic Alkalosis is relative to potassium in the bloodstream. “A Metaphysical Journey Continue reading >>

Acidosis Vs. Alkalosis

Acidosis Vs. Alkalosis

In this lesson, we're going to learn about acidosis and alkalosis. We'll take a look at the causes, signs, and symptoms that are associated with each condition. Balanced Blood We are constantly having to find balance in our lives. From balancing work and play time to saving and spending money, sleep and awake time. Well, ideally at least. We do this because we know that we function best when we're balanced. There are many similar balances that are going on inside of our bodies. An important balance that must be maintained to allow us to function properly is the balance between acids and bases in our bodies. When these are balanced, the acids pair up with the bases, and our blood is close to neutral. If too much acid is in the blood, then we experience acidosis. If too much base is in the blood, we experience alkalosis. Acidosis and alkalosis are caused by different conditions in our bodies, and they can cause different problems to occur. Acidosis Acidosis results from the build-up of acids in the blood or from the loss of base in the blood. Acids are put into our bloodstream through two systems in the body: the digestive system and the respiratory system. Acidosis that occurs from the digestive system is referred to as metabolic acidosis. In this instance, acids accumulate in the blood due to consumption of acidic foods or foods that are broken down into acids, excess acids being produced during metabolism, kidneys not properly removing acid from the bloodstream during filtration, or production of acid by the body due to other medical conditions, such as diabetes. The other possible way to develop acidosis is by the malfunctioning of the respiratory system, which we refer to as respiratory acidosis. This can happen if breathing is extremely slow or shallow, the lungs do Continue reading >>

Metabolic Alkalosis - Endocrine And Metabolic Disorders - Merck Manuals Professional Edition

Metabolic Alkalosis - Endocrine And Metabolic Disorders - Merck Manuals Professional Edition

(Video) Overview of Buffering and the Henderson-Hasselbalch Equation By James L. Lewis, III, MD, Attending Physician, Brookwood Baptist Health and Saint Vincents Ascension Health, Birmingham Metabolic alkalosis is primary increase in bicarbonate (HCO3) with or without compensatory increase in carbon dioxide partial pressure (Pco2); pH may be high or nearly normal. Common causes include prolonged vomiting, hypovolemia, diuretic use, and hypokalemia. Renal impairment of HCO3 excretion must be present to sustain alkalosis. Symptoms and signs in severe cases include headache, lethargy, and tetany. Diagnosis is clinical and with arterial blood gas and serum electrolyte measurement. The underlying condition is treated; oral or IV acetazolamide or hydrochloric acid is sometimes indicated. Metabolic alkalosis is bicarbonate (HCO3) accumulation due to Intracellular shift of hydrogen ion (H+as occurs in hypokalemia ) Regardless of initial cause, persistence of metabolic alkalosis indicates that the kidneys have increased their HCO3 reabsorption, because HCO3 is normally freely filtered by the kidneys and hence excreted. Volume depletion and hypokalemia are the most common stimuli for increased HCO3 reabsorption, but any condition that elevates aldosterone or mineralocorticoids (which enhance sodium [Na] reabsorption and potassium [K] and hydrogen ion [H+] excretion) can elevate HCO3. Thus, hypokalemia is both a cause and a frequent consequence of metabolic alkalosis. The most common causes of metabolic alkalosis are Volume depletion (particularly when involving loss of gastric acid and chloride [Cl] due to recurrent vomiting or nasogastric suction) Among other causes (see Table: Causes of Metabolic Alkalosis ) are disorders that cause Continue reading >>

What Is Metabolic Acidosis?

What Is Metabolic Acidosis?

Metabolic acidosis happens when the chemical balance of acids and bases in your blood gets thrown off. Your body: Is making too much acid Isn't getting rid of enough acid Doesn't have enough base to offset a normal amount of acid When any of these happen, chemical reactions and processes in your body don't work right. Although severe episodes can be life-threatening, sometimes metabolic acidosis is a mild condition. You can treat it, but how depends on what's causing it. Causes of Metabolic Acidosis Different things can set up an acid-base imbalance in your blood. Ketoacidosis. When you have diabetes and don't get enough insulin and get dehydrated, your body burns fat instead of carbs as fuel, and that makes ketones. Lots of ketones in your blood turn it acidic. People who drink a lot of alcohol for a long time and don't eat enough also build up ketones. It can happen when you aren't eating at all, too. Lactic acidosis. The cells in your body make lactic acid when they don't have a lot of oxygen to use. This acid can build up, too. It might happen when you're exercising intensely. Big drops in blood pressure, heart failure, cardiac arrest, and an overwhelming infection can also cause it. Renal tubular acidosis. Healthy kidneys take acids out of your blood and get rid of them in your pee. Kidney diseases as well as some immune system and genetic disorders can damage kidneys so they leave too much acid in your blood. Hyperchloremic acidosis. Severe diarrhea, laxative abuse, and kidney problems can cause lower levels of bicarbonate, the base that helps neutralize acids in blood. Respiratory acidosis also results in blood that's too acidic. But it starts in a different way, when your body has too much carbon dioxide because of a problem with your lungs. Continue reading >>

What Is The Difference Between Alkalosis And Acidosis?

What Is The Difference Between Alkalosis And Acidosis?

What Is the Difference between Alkalosis and Acidosis? The primary difference between alkalosis and acidosis is that alkalosis places blood pH above normal, while acidosis places blood pH below normal. The levels of bicarbonate (HCO3) and carbon dioxide (CO2) vary as well, being influenced by whether the acidosis or alkalosis is respiratory or metabolic in nature. Metabolic alkalosis and acidosis connects to diseases or conditions impacting HCO3, while respiratory alkalosis and acidosis connect to diseases or conditions impacting CO2. When people talk about pH or potential of hydrogen, they are talking about how acidic or alkaline a substance is. Blood normally has a very narrow pH range, which goes from 7.35 to 7.45. This is just above neutral, or a pH of 7. This range is optimal for metabolic processes and proper oxygen delivery, so anything outside of the normal range can result in health impairments. Alkalosis means that a person's blood pH has exceeded the upper range limit of 7.45, while acidosis means that a person's blood pH has fallen below the lower range limit of 7.35. Blood pH is connected to the lungs and kidneys to a high degree, because these organs are responsible for disposing of CO2 and HCO3 or acid, respectively. The pH level with respiratory acidosis is low, but levels of CO2 and HCO3 are high. Respiratory alkalosis gives the exact opposite results, having a high pH with low C02 and HCO3. When acidosis is metabolic, pH, CO2 and HCO3 are low, but when alkalosis is metabolic, pH, CO2 and HCO3 are all high. Looking only at respiratory alkalosis and acidosis, the causes are not the same. Respiratory alkalosis may stem from issues such as hyperventilation, fever, exercise, liver failure, or central nervous system problems. Acidosis that is respiratory in Continue reading >>

Metabolic Vs. Respiratory Acidosis

Metabolic Vs. Respiratory Acidosis

Watch short & fun videos Start Your Free Trial Today Log in or sign up to add this lesson to a Custom Course. Custom Courses are courses that you create from Study.com lessons. Use them just like other courses to track progress, access quizzes and exams, and share content. Organize and share selected lessons with your class. Make planning easier by creating your own custom course. Create a new course from any lesson page or your dashboard. Click "Add to" located below the video player and follow the prompts to name your course and save your lesson. Click on the "Custom Courses" tab, then click "Create course". Next, go to any lesson page and begin adding lessons. Edit your Custom Course directly from your dashboard. Name your Custom Course and add an optional description or learning objective. Create chapters to group lesson within your course. Remove and reorder chapters and lessons at any time. Share your Custom Course or assign lessons and chapters. Share or assign lessons and chapters by clicking the "Teacher" tab on the lesson or chapter page you want to assign. Students' quiz scores and video views will be trackable in your "Teacher" tab. You can share your Custom Course by copying and pasting the course URL. Only Study.com members will be able to access the entire course. We are going to learn about the two different types of acidosis and how they develop. This lesson will explain the differences and similarities that exist between the symptoms and treatments. What comes to mind when you think about acid? You might think about foods that contain acid, such as citrus fruit, or you may think about the battery in your car that contains acid. What probably didn't come to mind is your blood. Our blood is nowhere near as acidic as battery acid or citrus fruit, but the Continue reading >>

Merck And The Merck Manuals

Merck And The Merck Manuals

Acidosis is caused by an overproduction of acid in the blood or an excessive loss of bicarbonate from the blood (metabolic acidosis) or by a buildup of carbon dioxide in the blood that results from poor lung function or depressed breathing (respiratory acidosis). If an increase in acid overwhelms the body's acid-base control systems, the blood will become acidic. As blood pH drops (becomes more acidic), the parts of the brain that regulate breathing are stimulated to produce faster and deeper breathing (respiratory compensation). Breathing faster and deeper increases the amount of carbon dioxide exhaled. The kidneys also try to compensate by excreting more acid in the urine. However, both mechanisms can be overwhelmed if the body continues to produce too much acid, leading to severe acidosis and eventually heart problems and coma. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale. Metabolic acidosis develops when the amount of acid in the body is increased through ingestion of a substance that is, or can be broken down (metabolized) to, an acid—such as wood alcohol (methanol), antifreeze (ethylene glycol), or large doses of aspirin (acetylsalicylic acid). Metabolic acidosis can also occur as a result of abnormal metabolism. The body produces excess acid in the advanced stages of shock and in poorly controlled type 1 diabetes mellitus (diabetic ketoacidosis). Even the production of normal amounts of acid may lead to acidosis when the kidneys are not functioning normally and are therefore not able to excrete sufficient amounts of acid in the urine. Major Causes of Metabolic Acidosis Diabetic ketoacidosis (buildup of ketoacids) Drugs and substances such as acetazolamide, alcohols, and aspirin Lactic acidosis (buildup of lactic acid Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. See also separate Lactic Acidosis and Arterial Blood Gases - Indications and Interpretations articles. Description Metabolic acidosis is defined as an arterial blood pH <7.35 with plasma bicarbonate <22 mmol/L. Respiratory compensation occurs normally immediately, unless there is respiratory pathology. Pure metabolic acidosis is a term used to describe when there is not another primary acid-base derangement - ie there is not a mixed acid-base disorder. Compensation may be partial (very early in time course, limited by other acid-base derangements, or the acidosis exceeds the maximum compensation possible) or full. The Winter formula can be helpful here - the formula allows calculation of the expected compensating pCO2: If the measured pCO2 is >expected pCO2 then additional respiratory acidosis may also be present. It is important to remember that metabolic acidosis is not a diagnosis; rather, it is a metabolic derangement that indicates underlying disease(s) as a cause. Determination of the underlying cause is the key to correcting the acidosis and administering appropriate therapy[1]. Epidemiology It is relatively common, particularly among acutely unwell/critical care patients. There are no reliable figures for its overall incidence or prevalence in the population at large. Causes of metabolic acidosis There are many causes. They can be classified according to their pathophysiological origin, as below. The table is not exhaustive but lists those that are most common or clinically important to detect. Increased acid Continue reading >>

Acid-base Balance

Acid-base Balance

Your blood needs the right balance of acidic and basic (alkaline) compounds to function properly. This is called the acid-base balance. Your kidneys and lungs work to maintain the acid-base balance. Even slight variations from the normal range can have significant effects on your vital organs. Acid and alkaline levels are measured on a pH scale. An increase in acidity causes pH levels to fall. An increase in alkaline causes pH levels to rise. When the levels of acid in your blood are too high, it’s called acidosis. When your blood is too alkaline, it is called alkalosis. Respiratory acidosis and alkalosis are due to a problem with the lungs. Metabolic acidosis and alkalosis are due to a problem with the kidneys. Each of these conditions is caused by an underlying disease or disorder. Treatment depends on the cause. When you breathe, your lungs remove excess carbon dioxide from your body. When they cannot do so, your blood and other fluids become too acidic. Symptoms of respiratory acidosis Symptoms may include fatigue, shortness of breath, and confusion. Causes of respiratory acidosis There are several different causes of respiratory acidosis including: chest deformities or injuries chronic lung and airway diseases overuse of sedatives obesity Types of respiratory acidosis There are no noticeable symptoms of chronic respiratory acidosis. This is due to the fact that your blood slowly becomes acidic and your kidneys adjust to compensate, returning your blood to a normal pH balance. Acute respiratory acidosis comes on suddenly, leaving the kidneys no time to adjust. Those with chronic respiratory acidosis may experience acute respiratory acidosis due to another illness that causes the condition to worsen. Diagnosis of respiratory acidosis A complete physical examination Continue reading >>

Alkalosis - Hormonal And Metabolic Disorders - Merck Manuals Consumer Version

Alkalosis - Hormonal And Metabolic Disorders - Merck Manuals Consumer Version

By James L. Lewis, III, MD, Attending Physician, Brookwood Baptist Health and Saint Vincents Ascension Health, Birmingham Alkalosis is excessive blood alkalinity caused by an overabundance of bicarbonate in the blood or a loss of acid from the blood (metabolic alkalosis), or by a low level of carbon dioxide in the blood that results from rapid or deep breathing (respiratory alkalosis). People may have irritability, muscle twitching, muscle cramps, or even muscle spasms. Metabolic alkalosis is treated by replacing water and mineral salts such as sodium and potassium (electrolytes) and correcting the cause. Respiratory alkalosis is treated by correcting the cause. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale . Acidity and alkalinity are expressed on the pH scale, which ranges from 0 (strongly acidic) to 14 (strongly basic or alkaline). A pH of 7.0, in the middle of this scale, is neutral. Blood is normally slightly basic, with a normal pH range of 7.35 to 7.45. Usually the body maintains the pH of blood close to 7.40. If too much bicarbonate in the blood, a loss of acid from the blood or a low level of carbon dioxide in the blood overwhelms the body's acid-base control systems , the blood will become alkalotic. Alkalosis is categorized depending on its primary cause as Metabolic alkalosis develops when the body loses too much acid or gains too much base. For example, stomach acid is lost during periods of prolonged vomiting or when stomach acids are suctioned with a stomach tube (as is sometimes done in hospitals). In rare cases, metabolic alkalosis develops in a person who has ingested too much base from substances such as baking soda (bicarbonate of soda). In addition, metabolic alkalosis can develop when excessive loss of fl Continue reading >>

Acidosis

Acidosis

When your body fluids contain too much acid, it’s known as acidosis. Acidosis occurs when your kidneys and lungs can’t keep your body’s pH in balance. Many of the body’s processes produce acid. Your lungs and kidneys can usually compensate for slight pH imbalances, but problems with these organs can lead to excess acid accumulating in your body. The acidity of your blood is measured by determining its pH. A lower pH means that your blood is more acidic, while a higher pH means that your blood is more basic. The pH of your blood should be around 7.4. According to the American Association for Clinical Chemistry (AACC), acidosis is characterized by a pH of 7.35 or lower. Alkalosis is characterized by a pH level of 7.45 or higher. While seemingly slight, these numerical differences can be serious. Acidosis can lead to numerous health issues, and it can even be life-threatening. There are two types of acidosis, each with various causes. The type of acidosis is categorized as either respiratory acidosis or metabolic acidosis, depending on the primary cause of your acidosis. Respiratory acidosis Respiratory acidosis occurs when too much CO2 builds up in the body. Normally, the lungs remove CO2 while you breathe. However, sometimes your body can’t get rid of enough CO2. This may happen due to: chronic airway conditions, like asthma injury to the chest obesity, which can make breathing difficult sedative misuse deformed chest structure Metabolic acidosis Metabolic acidosis starts in the kidneys instead of the lungs. It occurs when they can’t eliminate enough acid or when they get rid of too much base. There are three major forms of metabolic acidosis: Diabetic acidosis occurs in people with diabetes that’s poorly controlled. If your body lacks enough insulin, keton Continue reading >>

Metabolic And Respiratory Acidosis And Alkalosis

Metabolic And Respiratory Acidosis And Alkalosis

There are two main types of pH imbalances in the body: acidosis and alkalosis. An increase in H+ ion levels in the blood causes pH levels to fall resulting in acidosis. A decrease in H+ levels causes pH levels to rise, making the blood more basic, or alkaline. These conditions can be caused by two kinds of disturbances to the buffers that control the body’s pH levels, which alter the acid-base balance. Metabolic and respiratory acidosis and alkalosis are the results of disruptions to the bicarbonate and carbonic acid components of the chemical buffers. Metabolic and respiratory acidosis result when pH levels fall due to an increase in H+ ions or a loss of bases causing the bodily fluids to become slightly acidic. Insufficient bicarbonate levels lower the pH levels of fluids in the digestive tract, resulting in metabolic acidosis. Respiratory acidosis is caused by excessive carbonic acid in the respiratory system, which lowers pH levels through the retention of CO2. Alkalosis is the result of opposite changes to the acid-base balance: excessive bicarbonate levels in the digestive system increases pH as H+ ion concentrations decrease, which causes fluids to become more basic. Insufficient carbonic acid levels are caused by excessive exhalation of CO2, resulting in respiratory alkalosis. Treatment for metabolic and respiratory acidosis and alkalosis varies depending on the underlying cause of the imbalance. Respiratory acidosis caused by hypoventilation can be treated with oxygen therapy and the help of breathing machines to help restore normal oxygen/carbon dioxide exchange, allowing the kidneys time to increase production of bicarbonate and reestablish the acid-base balance of the blood. Respiratory alkalosis caused by hyperventilation can be treated with inhalation of Continue reading >>

Simple Method Of Acid Base Balance Interpretation

Simple Method Of Acid Base Balance Interpretation

A FOUR STEP METHOD FOR INTERPRETATION OF ABGS Usefulness This method is simple, easy and can be used for the majority of ABGs. It only addresses acid-base balance and considers just 3 values. pH, PaCO2 HCO3- Step 1. Use pH to determine Acidosis or Alkalosis. ph < 7.35 7.35-7.45 > 7.45 Acidosis Normal or Compensated Alkalosis Step 2. Use PaCO2 to determine respiratory effect. PaCO2 < 35 35 -45 > 45 Tends toward alkalosis Causes high pH Neutralizes low pH Normal or Compensated Tends toward acidosis Causes low pH Neutralizes high pH Step 3. Assume metabolic cause when respiratory is ruled out. You'll be right most of the time if you remember this simple table: High pH Low pH Alkalosis Acidosis High PaCO2 Low PaCO2 High PaCO2 Low PaCO2 Metabolic Respiratory Respiratory Metabolic If PaCO2 is abnormal and pH is normal, it indicates compensation. pH > 7.4 would be a compensated alkalosis. pH < 7.4 would be a compensated acidosis. These steps will make more sense if we apply them to actual ABG values. Click here to interpret some ABG values using these steps. You may want to refer back to these steps (click on "linked" steps or use "BACK" button on your browser) or print out this page for reference. Step 4. Use HC03 to verify metabolic effect Normal HCO3- is 22-26 Please note: Remember, the first three steps apply to the majority of cases, but do not take into account: the possibility of complete compensation, but those cases are usually less serious, and instances of combined respiratory and metabolic imbalance, but those cases are pretty rare. "Combined" disturbance means HCO3- alters the pH in the same direction as the PaCO2. High PaCO2 and low HCO3- (acidosis) or Low PaCO2 and high HCO3- (alkalosis). Continue reading >>

Acid & Alkaline Nutrition: Shattering The Myths

Acid & Alkaline Nutrition: Shattering The Myths

According to Guy Schenker, DC: Acid/alkaline imbalances always involve respiratory function Acid/alkaline imbalances always involve renal function "The respiratory and renal involvement in an acidosis or alkalosis may be either part of the cause of, or part of the compensation for the acidosis or alkalosis...The most alarming misconception among nutritionists concerned with pH balance, one seems to reign supreme in the minds of an appalling majority of doctors, is that ACIDOSIS is ubiquitous among the sick of this world. Acidosis, they have been given to believe, is an accompaniment to, and even the primary cause of, every disease, every pain, every state of ill health to afflict humankind. "Wouldn’t it be nice if it were that simple? Pump up your patients’ alkaline reserves and cure them of anything? "And an ALKALOSIS? No such thing? Acid is bad, this theory contends, and alkaline is good. And there is no way one can have too much of a good thing. "In truth excess alkalinity is just as harmful as excess acidity. To clear the confusion, all physiological systems are maintained through a negative feedback mechanism that operates in a dualistic manner. Dualistic means that for every normal condition, there are 2 abnormals-abnormally high and abnormally low. To say that there is only one abnormal with respect to pH balance is to display total ignorance of the most basic fundamentals of physiology.” -‘An Analytical System of Clinical Nutrition’, -Guy Schenker, DC, 1989-2010 Your pH balance is uniquely yours Have you had enough of the half-truths about pH balance? Michael and Julie’s metabolic expertise will sort it out for you “In a metabolic alkalosis, there are increasing levels of bicarbonate ion in relation to H+. There are 3 main causes of bicarbonate inc Continue reading >>

More in ketosis