diabetestalk.net

Compensated Metabolic Acidosis Example

Share on facebook

Arterial blood gas: ABGs made easy for nurses, nursing school students with the Tic Tac Toe Method for NCLEX exam This video demonstrates how to set-up arterial blood gas problems for solving respiratory acidosis/alkalosis and metabolic acidosis/alkalosis (fully compensated or partially compensated. ABG Quiz: http://www.registerednursern.com/abg-... Video: How to use the Tic Tac Toe Method for PARTIALLY vs FULLY Compensated ABGs: https://www.youtube.com/watch?v=t_V8E... Respiratory Acidosis: https://www.youtube.com/watch?v=X0Vjn... Subscribe: http://www.youtube.com/subscription_c... Nursing School Supplies: http://www.registerednursern.com/the-... Nursing Job Search: http://www.registerednursern.com/nurs... Visit our website RegisteredNurseRN.com for free quizzes, nursing care plans, salary information, job search, and much more: http://www.registerednursern.com Check out other Videos: https://www.youtube.com/user/Register... Popular Playlists: "NCLEX Study Strategies": https://www.youtube.com/playlist?list... "Fluid & Electrolytes Made So Easy": https://www.youtube.com/playlist?list... "Nursing Skills Videos": https://www.youtube.com/playlist?list... "Nursing School Study Tips": https://www.youtube.com/playlist?list... "Nursing School Tips & Questions": https://www.youtube.com/playlist?list... "Teaching Tutorials": https://www.youtube.com/playlist?list... "Types of Nursing Specialties": https://www.youtube.com/playlist?list... "Healthcare Salary Information": https://www.youtube.com/playlist?list... "New Nurse Tips": https://www.youtube.com/playlist?list... "Nursing Career Help": https://www.youtube.com/playlist?list... "EKG Teaching Tutorials": https://www.youtube.com/playlist?list... "Personality Types": https://www.youtube.com/playlist?list... "Dosage & Calculations for Nurses": https://www.youtube.com/playlist?list... "Diabetes Health Managment": https://www.youtube.com/playlist?list...

The Abcs Of Abgs: Blood Gas Analysis

A systematic and step-wise process based upon pH shift is the key to correct interpretation and application of arterial blood gas results In a previous article, “The Pitfalls of Arterial Blood Gases” (RT, April 2013), I described how simple pre-analytical, analytical, and post-analytical errors can produce arterial blood gas test results (ABGs) that are of little or no value, and perhaps even dangerous. In this article, I will assume that we have avoided all of those pitfalls and and will discuss how to interpret valid ABG results. (Some of the foundational information in this article is necessary for those new to interpreting. I encourage more experienced practitioners to bear with me.) This article will not attempt to discuss all of the possible causes or disease states that could relate to the results. Neither will it attempt to go into the interpretation of electrolytes or co-oximetry results. Adequate review of these subjects could require—in fact, have required—whole textbooks, and are beyond the scope of this article. What Is Normal? To interpret ABGs, we first need to know the normal values for the various analytes. Where do these normal values come from? They mostl Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more
Share on facebook

A discussion of the anion gap, including its calculation and its use in categorizing metabolic acidoses, including multiple examples of acid-base interpretation.

Abg Interpretation

Arterial blood gas (ABG) interpretation is something many medical students find difficult to grasp (we’ve been there). We’ve created this guide, which aims to provide a structured approach to ABG interpretation whilst also increasing your understanding of each results relevance. The real value of an ABG comes from its ability to provide a near immediate reflection of the physiology of your patient, allowing you to recognise and treat pathology more rapidly. To see how to perform an arterial blood gas check out our guide here. If you want to put your ABG interpretation skills to the test, check out our ABG quiz here. Normal ranges pH: 7.35 – 7.45 PaCO2: 4.7-6.0 kPa PaO2: 11-13 kPa HCO3-: 22-26 mEg/L Base excess: -2 to +2 mmol/L Patient’s clinical condition Before getting stuck into the details of the analysis, it’s important to look at the patient’s current clinical status, as this provides essential context to the ABG result. Below are a few examples to demonstrate how important context is when interpreting an ABG. A normal PaO2 in a patient on high flow oxygen – this is abnormal as you would expect the patient to have a PaO2 well above the normal range with this leve Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more
Share on facebook

Caroline Variath demonstrates how we are able to analyze an arterial blood gas result and evaluate changes that might reflect those blood gas results on a client. __ Next Video: ABG Analysis | Part 2 of 2: Partial and Full Compensation - https://youtu.be/DAtgisR-RNY

Arterial Blood Gas (abg) Interpretation For Medical Students, Osces And Mrcp Paces

Arterial Blood Gas (ABG) interpretation for medical students, OSCEs and MRCP Arterial Blood Gas (ABG) interpretation for medical students, OSCEs and MRCP PACES This section presents how to interpret arterial blood gases. It explains each component in turn followed by clinical examples to work through. The most important points when assessing a patient are the history, examination and basic observations. Investigations such as arterial blood gases add to the information you have already gained to guide your management. Arterial blood gas analysis can be used to assess gas exchange and acid base status as well as to provide immediate information about electrolytes. It is also useful to have access to any previous gases. This is particularly important if your patient is known to have chronic respiratory disease with existing chronic ABG changes. Normal values for arterial blood gas (ABG) Normal values are given below. Note that these may vary slightly between analysers. Be sure to know the normal ranges and units for the analyser you will be using. Click here for related pages: ABG examples and ABG exam questions pH is a logarithmic scale of the concentration of hydrogen ions in a so Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Partially Compensated Metabolic Acidosis Example

    ABG interpretation made easy: acid base balance So you made it this far. Now you must interpret the results. Looking for some tips to ease your anxiety over an upcoming test that covers arterial blood gas (ABG) interpretation? Well, look no further. The goal of this blog is to make your life easy. ABG interpretation is as easy as remembering four basic questions, and then answering them in sequence. Of course then you'll have to practice, practi ...

    ketosis Apr 1, 2018
  • Partially Compensated Respiratory Acidosis Example

    ABG values can be very intimidating! Its hard to remember all the different normal values, what they mean, and which direction theyre supposed to be going. With so much information, its super easy to get mixed up and make a stupid mistake on an exam, even when you really DO know how to interpret ABGs. In this article, Im focusing more on the How to, rather than understanding whats going on with the A&P, which Ive already done in previous article ...

    ketosis Apr 2, 2018
  • How Can Metabolic Acidosis Be Compensated?

    Arterial Blood Gas (ABG) analysis requires in-depth expertise. If the results are not understood right, or are wrongly interpreted, it can result in wrong diagnosis and end up in an inappropriate management of the patient. ABG analysis is carried out when the patient is dealing with the following conditions: • Breathing problems • Lung diseases (asthma, cystic fibrosis, COPD) • Heart failure • Kidney failure ABG reports help in answering ...

    ketosis Apr 9, 2018
  • Partially Compensated Metabolic Acidosis

    Department of Oral and Maxillofacial Surgery, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India Address for correspondence: Dr. Virendra Singh, Department of Oral and Maxillofacial Surgery, Post Graduate Institute of Dental Sciences, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana - 124 001, India. E-mail: [email protected] Author information Copyright and License information Disclaimer Copyright : Nati ...

    ketosis Apr 1, 2018
  • Compensated Metabolic Acidosis Example

    Arterial Blood Gas Analysis: Example Set 2 You are working in the emergency room when the paramedics bring in a 45 year-old man who was found down in Pioneer Square. He is somnolent but arouseable. He has emesis on his shirt. He is hypotensive and tachycardic. Labs are drawn and reveal the following: Step 2: The PCO2 is low (respiratory alkalosis) and the bicarbonate is low (metabolic acidosis). Therefore, the metabolic acidosis is the primary p ...

    ketosis Apr 2, 2018
  • Metabolic Acidosis Would Be Compensated By What Body System

    The body tries to minimize pH changes and responds to acid-base disturbances with body buffers, compensatory responses by the lungs and kidney (to metabolic and respiratory disturbances, respectively) and by the kidney correcting metabolic disturbances. Body buffers: There are intracellular and extracellular buffers for primary respiratory and metabolic acid-base disturbances. Intracellular buffers include hemoglobin in erythrocytes and phosphate ...

    ketosis Jan 11, 2018

More in ketosis