diabetestalk.net

Can Your Body Produce Glucose?

The Liver And Blood Glucose Levels

The Liver And Blood Glucose Levels

Tweet Glucose is the key source of energy for the human body. Supply of this vital nutrient is carried through the bloodstream to many of the body’s cells. The liver produces, stores and releases glucose depending on the body’s need for glucose, a monosaccharide. This is primarily indicated by the hormones insulin - the main regulator of sugar in the blood - and glucagon. In fact, the liver acts as the body’s glucose reservoir and helps to keep your circulating blood sugar levels and other body fuels steady and constant. How the liver regulates blood glucose During absorption and digestion, the carbohydrates in the food you eat are reduced to their simplest form, glucose. Excess glucose is then removed from the blood, with the majority of it being converted into glycogen, the storage form of glucose, by the liver’s hepatic cells via a process called glycogenesis. Glycogenolysis When blood glucose concentration declines, the liver initiates glycogenolysis. The hepatic cells reconvert their glycogen stores into glucose, and continually release them into the blood until levels approach normal range. However, when blood glucose levels fall during a long fast, the body’s glycogen stores dwindle and additional sources of blood sugar are required. To help make up this shortfall, the liver, along with the kidneys, uses amino acids, lactic acid and glycerol to produce glucose. This process is known as gluconeogenesis. The liver may also convert other sugars such as sucrose, fructose, and galactose into glucose if your body’s glucose needs not being met by your diet. Ketones Ketones are alternative fuels that are produced by the liver from fats when sugar is in short supply. When your body’s glycogen storage runs low, the body starts conserving the sugar supplies fo Continue reading >>

How Our Bodies Turn Food Into Energy

How Our Bodies Turn Food Into Energy

All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be used later. However, our bodies need insulin in order to use or store glucose for energy. Without insulin, glucose stays in the bloodstream, keeping blood sugar levels high. Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the amount of glucose in the bloodstream. Normally beta cells check the blood's glucose level every few seconds and sense when they need to speed up or slow down the amount of insulin they're making and releasing. When someone eats something high in carbohydrates, like a piece of bread, the glucose level in the blood rises and the beta cells trigger the pancreas to release more insulin into the bloodstream. When insulin is released from the pancreas, it travels through the bloodstream to the body's cells and tells the cell doors to open up to let the glucose in. Once inside, the cells convert glucose into energy to use right then or store it to use later. As glucose moves from the bloodstream into the cells, blood sugar levels start to drop. The beta cells in the pancreas can tell this is happening, so they slow down the amount of insulin they're making. At the same time, the pancreas slows down the amount of insulin that it's releasing into the bloodstream. When this happens, Continue reading >>

How Is Glucose Produced?

How Is Glucose Produced?

Your body thrives on glucose, which is the sugar it uses to synthesize energy. Carbohydrates supply glucose and other sugars that are converted into glucose. But it's such a vital source of energy that the body has a back-up system called gluconeogenesis. This metabolic pathway produces new glucose from noncarbohydrate sources. Video of the Day Carbohydrates are made from molecules of sugar connected together. Simple sugars consist of one to three sugar molecules, while starches contain hundreds to thousands of molecules, reports Colorado State University. The small intestine only absorbs single sugar molecules, which is why digestive enzymes break carbs down into the three monosaccharides: glucose, galactose and fructose. The monosaccharides travel to the liver, where glucose is generated when the liver turns galactose and fructose into glucose. The liver may send glucose into the bloodstream, where it’s transported to cells that need it for energy. If blood levels of glucose are high enough to meet your energy needs, the liver stores glucose by turning it into glycogen or fat. New Glucose Synthesis When the body produces glucose from something other than carbohydrates, the process is called gluconeogenesis. Most gluconeogenesis occurs in the liver, but a small amount also takes place in the kidneys and small intestine. Like carbs, fats and proteins are digested into smaller units. Glycerol from fats and amino acids from proteins may be used to make glucose. All amino acids except leucine and lysine can enter the gluconeogenesis pathway, but glutamine is the only one used in the kidneys and small intestine, according to Medical Biochemistry Page. Lactate is another substance used to synthesize new glucose. The boost in energy metabolism during intense exercise result Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

Why Diabetics Over Produce Sugar In The Liver

Why Diabetics Over Produce Sugar In The Liver

Why Diabetics Over Produce Sugar in the Liver Type 2 diabetics often suffer from an over-production of sugar within the liver, a response to falling blood glucose levels. This potentially dangerous mechanism was poorly understood until recently, when researchers uncovered the role that a certain master regulator plays in sugar production within the liver. While an inability to regulate blood glucose levels, due to resistance to insulin produced by pancreatic beta cells, is the primary mechanism that leads to and enhances type 2 diabetes, the liver plays a large role as well. Beta-cells, in a healthy body, produce insulin, which helps regulate blood glucose levels, but the liver itself directly responds to low blood glucose levels by producing more sugar. In type 2 diabetics, who suffer from insulin resistance (and therefore dysfunctional regulation of blood glucose with insulin), the liver often has a tendency to produce sugar when not really needed, which can cause potential harm. In other words, the liver continues to produce sugar past what it should, because insulin is not regulating the sugar already being produced, in type 2 diabetics. To illustrate the role that the liver plays in type 2 diabetics, researcher Dr. Jenny Gunton explains that over-production of sugar within the liver is why many diabetics wake up with higher blood glucose levels than they had when going to sleep: It upsets people when their blood sugar behaves as if theyre getting up in the night and having a really big snack. I have to tell them its just one of those unfair things about having diabetes. Researchers looked at ARNT, a so-called master regulator, which is known to play a large role in insulin production and blood glucose control. Past research by the same research team demonstrated t Continue reading >>

The Liver & Blood Sugar

The Liver & Blood Sugar

During a meal, your liver stores sugar for later. When you’re not eating, the liver supplies sugar by turning glycogen into glucose in a process called glycogenolysis. The liver both stores and produces sugar… The liver acts as the body’s glucose (or fuel) reservoir, and helps to keep your circulating blood sugar levels and other body fuels steady and constant. The liver both stores and manufactures glucose depending upon the body’s need. The need to store or release glucose is primarily signaled by the hormones insulin and glucagon. During a meal, your liver will store sugar, or glucose, as glycogen for a later time when your body needs it. The high levels of insulin and suppressed levels of glucagon during a meal promote the storage of glucose as glycogen. The liver makes sugar when you need it…. When you’re not eating – especially overnight or between meals, the body has to make its own sugar. The liver supplies sugar or glucose by turning glycogen into glucose in a process called glycogenolysis. The liver also can manufacture necessary sugar or glucose by harvesting amino acids, waste products and fat byproducts. This process is called gluconeogenesis. When your body’s glycogen storage is running low, the body starts to conserve the sugar supplies for the organs that always require sugar. These include: the brain, red blood cells and parts of the kidney. To supplement the limited sugar supply, the liver makes alternative fuels called ketones from fats. This process is called ketogenesis. The hormone signal for ketogenesis to begin is a low level of insulin. Ketones are burned as fuel by muscle and other body organs. And the sugar is saved for the organs that need it. The terms “gluconeogenesis, glycogenolysis and ketogenesis” may seem like compli Continue reading >>

How Does Eating Affect Your Blood Sugar?

How Does Eating Affect Your Blood Sugar?

Part 1 of 8 What is blood sugar? Blood sugar, also known as blood glucose, comes from the food you eat. Your body creates blood sugar by digesting some food into a sugar that circulates in your bloodstream. Blood sugar is used for energy. The sugar that isn’t needed to fuel your body right away gets stored in cells for later use. Too much sugar in your blood can be harmful. Type 2 diabetes is a disease that is characterized by having higher levels of blood sugar than what is considered within normal limits. Unmanaged diabetes can lead to problems with your heart, kidneys, eyes, and blood vessels. The more you know about how eating affects blood sugar, the better you can protect yourself against diabetes. If you already have diabetes, it’s important to know how eating affects blood sugar. Part 2 of 8 Your body breaks down everything you eat and absorbs the food in its different parts. These parts include: carbohydrates proteins fats vitamins and other nutrients The carbohydrates you consume turn into blood sugar. The more carbohydrates you eat, the higher the levels of sugar you will have released as you digest and absorb your food. Carbohydrates in liquid form consumed by themselves are absorbed more quickly than those in solid food. So having a soda will cause a faster rise in your blood sugar levels than eating a slice of pizza. Fiber is one component of carbohydrates that isn’t converted into sugar. This is because it can’t be digested. Fiber is important for health, though. Protein, fat, water, vitamins, and minerals don’t contain carbohydrates. These components won’t affect your blood sugar levels. If you have diabetes, your carbohydrate intake is the most important part of your diet to consider when it comes to managing your blood sugar levels. Part 3 Continue reading >>

Carbohydrates, Proteins, Fats, And Blood Sugar

Carbohydrates, Proteins, Fats, And Blood Sugar

The body uses three main nutrients to function-carbohydrate, protein, and fat. These nutrients are digested into simpler compounds. Carbohydrates are used for energy (glucose). Fats are used for energy after they are broken into fatty acids. Protein can also be used for energy, but the first job is to help with making hormones, muscle, and other proteins. Nutrients needed by the body and what they are used for Type of nutrient Where it is found How it is used Carbohydrate (starches and sugars) Breads Grains Fruits Vegetables Milk and yogurt Foods with sugar Broken down into glucose, used to supply energy to cells. Extra is stored in the liver. Protein Meat Seafood Legumes Nuts and seeds Eggs Milk products Vegetables Broken down into amino acids, used to build muscle and to make other proteins that are essential for the body to function. ADVERTISINGinRead invented by Teads Fat Oils Butter Egg yolks Animal products Broken down into fatty acids to make cell linings and hormones. Extra is stored in fat cells. After a meal, the blood sugar (glucose) level rises as carbohydrate is digested. This signals the beta cells of the pancreas to release insulin into the bloodstream. Insulin helps glucose enter the body's cells to be used for energy. If all the glucose is not needed for energy, some of it is stored in fat cells and in the liver as glycogen. As sugar moves from the blood to the cells, the blood glucose level returns to a normal between-meal range. Several hormones and processes help regulate the blood sugar level and keep it within a certain range (70 mg/dL to 120 mg/dL). When the blood sugar level falls below that range, which may happen between meals, the body has at least three ways of reacting: Cells in the pancreas can release glucagon, a hormone that signals the b Continue reading >>

Healing Leaky Livers

Healing Leaky Livers

It may surprise you to know that, for many people, Type 2 diabetes is primarily a liver disease. The pancreas damage comes later. Is there anything we can do to heal a diabetic liver? Liver issues in diabetes are complicated. An article in the journal Clinical Diabetes explained that diabetes can cause liver disease; liver disease can cause diabetes; or both can arise together from other causes. Whichever comes first, the sick liver may produce way too much glucose, enough to overwhelm the body’s insulin. Why would a liver start pumping out unneeded glucose? Unhealthy livers tend to have a lot of fat in them, a condition called nonalcoholic fatty liver disease, or NAFLD. You don’t have to be fat to have a fatty liver (although overweight and obesity are risk factors). Thin people get it too, and the causes of NAFLD are unknown. Some are thought to be genetic. However, a recent animal study published in the journal PLOS One found that prenatal exposure to alcohol (from a mother who drank while pregnant) is strongly associated diabetes-like glucose production by the liver. There are probably other causes as well, including environmental chemicals and possibly unhealthy diets. A rat study in the Journal of Biological Chemistry found that fatty livers became more resistant to insulin. The researchers found processes by which insulin normally tells the liver to stop producing unwanted glucose. Excess fat in the liver seemed to block these processes, so too much glucose was produced. Human livers apparently act the same way. An Italian study in The American Journal of Medicine found that subjects with NAFLD had high fasting and postmeal insulin levels, high insulin resistance, and high triglyceride levels. (Triglycerides are a kind of blood fat.) High insulin levels can b Continue reading >>

Gluconeogenesis

Gluconeogenesis

Gluconeogenesis (GNG) is a metabolic process of making glucose, a necessary body fuel, from non-carbohydrate sources such as protein (amino acids), lactate from the muscles and the glycerol component of fatty acids. Blood glucose levels must be maintained within a narrow range for good health. If blood sugar is too high, it results in tissue and organ damage. If it is too low, cellular respiration and energy production can suffer, especially if the body is "carbohydrate-adapted," meaning the body uses glucose as it's primary fuel. Therefore, the ability of the liver and kidneys to “make new sugar” and regulate blood sugar levels is critical. The main advantage of this process is that it helps the body maintain steady blood sugar levels when foods containing carbohydrates or stored sugars (glycogen reserves) are unavailable. Without gluconeogenesis, you wouldn't live very long, especially without food, as your body must have a constant and steady level of blood glucose to keep the brain and red blood cells going. Mold Test Kits Easy to Use, Fast Results Available Interpretive Lab Report moldtesting.com Glucose and Ignorance If you decide to stop eating, or you decide to follow a low carb ketogenic diet, carbohydrate intake drops. To make up for the missing carbohydrate in your diet, the liver creates the blood glucose it needs by breaking down the glycogen stored in your muscles and liver from your last meal. This process is called glycogenolysis. After about 30 hours with no food, a great deal of this stored glycogen is broken down, and the body must then begin making glucose by breaking down stored fatty acids or amino acids from the protein in your muscles. Some dietitians and trainers insist that this process is the reason that carbohydrates are "essential foods" Continue reading >>

Video: How Diabetes Affects Your Blood Sugar

Video: How Diabetes Affects Your Blood Sugar

Your body uses glucose for energy. Glucose metabolism requires insulin, a hormone produced by your pancreas. Here's how normal glucose metabolism works, and what happens when you have diabetes — a disease where your body either can't produce enough insulin or it can't use insulin properly. The food you eat consists of three basic nutrients: carbohydrates, protein and fat. During digestion, chemicals in your stomach break down carbohydrates into glucose, which is absorbed into your bloodstream. Your pancreas responds to the glucose by releasing insulin. Insulin is responsible for allowing glucose into your body's cells. When the glucose enters your cells, the amount of glucose in your bloodstream falls. If you have type 1 diabetes, your pancreas doesn't secrete insulin — which causes a buildup of glucose in your bloodstream. Without insulin, the glucose can't get into your cells. If you have type 2 diabetes, your pancreas secretes less insulin than your body requires because your body is resistant to its effect. With both types of diabetes, glucose cannot be used for energy, and it builds up in your bloodstream — causing potentially serious health complications. Continue reading >>

Everything You Need To Know About Glucose

Everything You Need To Know About Glucose

You may know glucose by another name: blood sugar. Glucose is key to keeping the mechanisms of the body in top working order. When our glucose levels are optimal, it often goes unnoticed. But when they stray from recommended boundaries, you’ll notice the unhealthy effect it has on normal functioning. So what is glucose, exactly? It’s the simplest of the carbohydrates, making it a monosaccharide. This means it has one sugar. It’s not alone. Other monosaccharides include fructose, galactose, and ribose. Along with fat, glucose is one of the body’s preferred sources of fuel in the form of carbohydrates. People get glucose from bread, fruits, vegetables, and dairy products. You need food to create the energy that helps keep you alive. While glucose is important, like with so many things, it’s best in moderation. Glucose levels that are unhealthy or out of control can have permanent and serious effects. Our body processes glucose multiple times a day, ideally. When we eat, our body immediately starts working to process glucose. Enzymes start the breakdown process with help from the pancreas. The pancreas, which produces hormones including insulin, is an integral part of how our body deals with glucose. When we eat, our body tips the pancreas off that it needs to release insulin to deal with the rising blood sugar level. Some people, however, can’t rely on their pancreas to jump in and do the work it’s supposed to do. One way diabetes occurs is when the pancreas doesn’t produce insulin in the way it should. In this case, people need outside help (insulin injections) to process and regulate glucose in the body. Another cause of diabetes is insulin resistance, where the liver doesn’t recognize insulin that’s in the body and continues to make inappropriate am Continue reading >>

Type 2 Diabetes: What Is It?

Type 2 Diabetes: What Is It?

When it comes to your body, you probably spend more time thinking about your hair than your hormones. For some people, though, a problem with a hormone called insulin causes a health condition called type 2 diabetes (pronounced: dye-uh-BEE-tees). Diabetes is a disease that affects how the body uses glucose (pronounced: GLOO-kose), a sugar that is the body's main source of fuel. Your body needs glucose to keep running. Here's how it should work: Glucose from the food gets into your bloodstream. Your pancreas makes a hormone called insulin (pronounced: IN-suh-lin). Insulin helps the glucose get into the body's cells. The pancreas is a long, flat gland in your belly that helps your body digest food. It also makes insulin. Insulin is like a key that opens the doors to the cells of the body. It lets the glucose in. Then the glucose can move out of the blood and into the cells. But if someone has diabetes, either the body can't make insulin or the insulin doesn't work in the body like it should. The glucose can't get into the cells normally, so the blood sugar level gets too high. Lots of sugar in the blood makes people sick if they don't get treatment. There are two major types of diabetes: type 1 and type 2. Each type causes high blood sugar levels in a different way. In type 1 diabetes , the pancreas can't make insulin. The body can still get glucose from food, but the glucose can't get into the cells, where it's needed, and glucose stays in the blood. This makes the blood sugar level very high. With type 2 diabetes, the body still makes insulin. But a person with type 2 diabetes doesn't respond normally to the insulin the body makes. So glucose is less able to enter the cells and do its job of supplying energy. When glucose can't enter the cells in this way, doctors call Continue reading >>

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

As mouth-watering as a sugar-laden sundae or icing-topped cupcake is, we should all know by now that sugar isn't exactly healthy. In fact, it may be one of the worst things you can eat (that is, if you're trying to live a long, healthy life). One study from UC San Francisco actually found that drinking sugary drinks like soda can age your body on a cellular level as quickly as cigarettes. The way the sweet stuff impacts your body is way more complex than just causing weight gain. In fact, when you eat a ton of sugar, almost every part of your body feels the strain—and that's bad news for your health in both the short term and especially the long term. From an initial insulin spike to upping your chances of kidney failure down the road, this is what really happens in your body when you load up on sugar. Your brain responds to sugar the same way it would to cocaine. Eating sugar creates a surge of feel-good brain chemicals dopamine and serotonin. So does using certain drugs, like cocaine. And just like a drug, your body craves more after the initial high. "You then become addicted to that feeling, so every time you eat it you want to eat more," explains Gina Sam, M.D., M.P.H., director of the Gastrointestinal Motility Center at The Mount Sinai Hospital. Your insulin spikes to regulate your blood sugar. "Once you eat glucose, your body releases insulin, a hormone from your pancreas," Dr. Sam explains. The insulin's job is to absorb the excess glucose in the blood and stabilize sugar levels. And a little while later you get that familiar sugar crash. Once the insulin does its job, your blood sugar drops again. Which means you've just experienced a sugar rush, and then a drastic drop, leaving you feeling drained. "That's the feeling you get when you've gone to the buffet a Continue reading >>

More in ketosis