diabetestalk.net

Can Your Body Produce Glucose?

How Does Eating Affect Your Blood Sugar?

How Does Eating Affect Your Blood Sugar?

Part 1 of 8 What is blood sugar? Blood sugar, also known as blood glucose, comes from the food you eat. Your body creates blood sugar by digesting some food into a sugar that circulates in your bloodstream. Blood sugar is used for energy. The sugar that isn’t needed to fuel your body right away gets stored in cells for later use. Too much sugar in your blood can be harmful. Type 2 diabetes is a disease that is characterized by having higher levels of blood sugar than what is considered within normal limits. Unmanaged diabetes can lead to problems with your heart, kidneys, eyes, and blood vessels. The more you know about how eating affects blood sugar, the better you can protect yourself against diabetes. If you already have diabetes, it’s important to know how eating affects blood sugar. Part 2 of 8 Your body breaks down everything you eat and absorbs the food in its different parts. These parts include: carbohydrates proteins fats vitamins and other nutrients The carbohydrates you consume turn into blood sugar. The more carbohydrates you eat, the higher the levels of sugar you will have released as you digest and absorb your food. Carbohydrates in liquid form consumed by themselves are absorbed more quickly than those in solid food. So having a soda will cause a faster rise in your blood sugar levels than eating a slice of pizza. Fiber is one component of carbohydrates that isn’t converted into sugar. This is because it can’t be digested. Fiber is important for health, though. Protein, fat, water, vitamins, and minerals don’t contain carbohydrates. These components won’t affect your blood sugar levels. If you have diabetes, your carbohydrate intake is the most important part of your diet to consider when it comes to managing your blood sugar levels. Part 3 Continue reading >>

Can Fats Be Turned Into Glycogen For Muscle?

Can Fats Be Turned Into Glycogen For Muscle?

The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

Healing Leaky Livers

Healing Leaky Livers

It may surprise you to know that, for many people, Type 2 diabetes is primarily a liver disease. The pancreas damage comes later. Is there anything we can do to heal a diabetic liver? Liver issues in diabetes are complicated. An article in the journal Clinical Diabetes explained that diabetes can cause liver disease; liver disease can cause diabetes; or both can arise together from other causes. Whichever comes first, the sick liver may produce way too much glucose, enough to overwhelm the body’s insulin. Why would a liver start pumping out unneeded glucose? Unhealthy livers tend to have a lot of fat in them, a condition called nonalcoholic fatty liver disease, or NAFLD. You don’t have to be fat to have a fatty liver (although overweight and obesity are risk factors). Thin people get it too, and the causes of NAFLD are unknown. Some are thought to be genetic. However, a recent animal study published in the journal PLOS One found that prenatal exposure to alcohol (from a mother who drank while pregnant) is strongly associated diabetes-like glucose production by the liver. There are probably other causes as well, including environmental chemicals and possibly unhealthy diets. A rat study in the Journal of Biological Chemistry found that fatty livers became more resistant to insulin. The researchers found processes by which insulin normally tells the liver to stop producing unwanted glucose. Excess fat in the liver seemed to block these processes, so too much glucose was produced. Human livers apparently act the same way. An Italian study in The American Journal of Medicine found that subjects with NAFLD had high fasting and postmeal insulin levels, high insulin resistance, and high triglyceride levels. (Triglycerides are a kind of blood fat.) High insulin levels can b Continue reading >>

How Our Bodies Turn Food Into Energy

How Our Bodies Turn Food Into Energy

All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be used later. However, our bodies need insulin in order to use or store glucose for energy. Without insulin, glucose stays in the bloodstream, keeping blood sugar levels high. Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the amount of glucose in the bloodstream. Normally beta cells check the blood's glucose level every few seconds and sense when they need to speed up or slow down the amount of insulin they're making and releasing. When someone eats something high in carbohydrates, like a piece of bread, the glucose level in the blood rises and the beta cells trigger the pancreas to release more insulin into the bloodstream. When insulin is released from the pancreas, it travels through the bloodstream to the body's cells and tells the cell doors to open up to let the glucose in. Once inside, the cells convert glucose into energy to use right then or store it to use later. As glucose moves from the bloodstream into the cells, blood sugar levels start to drop. The beta cells in the pancreas can tell this is happening, so they slow down the amount of insulin they're making. At the same time, the pancreas slows down the amount of insulin that it's releasing into the bloodstream. When this happens, Continue reading >>

Video: How Diabetes Affects Your Blood Sugar

Video: How Diabetes Affects Your Blood Sugar

Your body uses glucose for energy. Glucose metabolism requires insulin, a hormone produced by your pancreas. Here's how normal glucose metabolism works, and what happens when you have diabetes — a disease where your body either can't produce enough insulin or it can't use insulin properly. The food you eat consists of three basic nutrients: carbohydrates, protein and fat. During digestion, chemicals in your stomach break down carbohydrates into glucose, which is absorbed into your bloodstream. Your pancreas responds to the glucose by releasing insulin. Insulin is responsible for allowing glucose into your body's cells. When the glucose enters your cells, the amount of glucose in your bloodstream falls. If you have type 1 diabetes, your pancreas doesn't secrete insulin — which causes a buildup of glucose in your bloodstream. Without insulin, the glucose can't get into your cells. If you have type 2 diabetes, your pancreas secretes less insulin than your body requires because your body is resistant to its effect. With both types of diabetes, glucose cannot be used for energy, and it builds up in your bloodstream — causing potentially serious health complications. Continue reading >>

How Is Glucose Produced?

How Is Glucose Produced?

Your body thrives on glucose, which is the sugar it uses to synthesize energy. Carbohydrates supply glucose and other sugars that are converted into glucose. But it's such a vital source of energy that the body has a back-up system called gluconeogenesis. This metabolic pathway produces new glucose from noncarbohydrate sources. Video of the Day Carbohydrates are made from molecules of sugar connected together. Simple sugars consist of one to three sugar molecules, while starches contain hundreds to thousands of molecules, reports Colorado State University. The small intestine only absorbs single sugar molecules, which is why digestive enzymes break carbs down into the three monosaccharides: glucose, galactose and fructose. The monosaccharides travel to the liver, where glucose is generated when the liver turns galactose and fructose into glucose. The liver may send glucose into the bloodstream, where it’s transported to cells that need it for energy. If blood levels of glucose are high enough to meet your energy needs, the liver stores glucose by turning it into glycogen or fat. New Glucose Synthesis When the body produces glucose from something other than carbohydrates, the process is called gluconeogenesis. Most gluconeogenesis occurs in the liver, but a small amount also takes place in the kidneys and small intestine. Like carbs, fats and proteins are digested into smaller units. Glycerol from fats and amino acids from proteins may be used to make glucose. All amino acids except leucine and lysine can enter the gluconeogenesis pathway, but glutamine is the only one used in the kidneys and small intestine, according to Medical Biochemistry Page. Lactate is another substance used to synthesize new glucose. The boost in energy metabolism during intense exercise result Continue reading >>

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

Carbohydrates, Proteins, Fats, And Blood Sugar

Carbohydrates, Proteins, Fats, And Blood Sugar

The body uses three main nutrients to function-carbohydrate, protein, and fat. These nutrients are digested into simpler compounds. Carbohydrates are used for energy (glucose). Fats are used for energy after they are broken into fatty acids. Protein can also be used for energy, but the first job is to help with making hormones, muscle, and other proteins. Nutrients needed by the body and what they are used for Type of nutrient Where it is found How it is used Carbohydrate (starches and sugars) Breads Grains Fruits Vegetables Milk and yogurt Foods with sugar Broken down into glucose, used to supply energy to cells. Extra is stored in the liver. Protein Meat Seafood Legumes Nuts and seeds Eggs Milk products Vegetables Broken down into amino acids, used to build muscle and to make other proteins that are essential for the body to function. ADVERTISINGinRead invented by Teads Fat Oils Butter Egg yolks Animal products Broken down into fatty acids to make cell linings and hormones. Extra is stored in fat cells. After a meal, the blood sugar (glucose) level rises as carbohydrate is digested. This signals the beta cells of the pancreas to release insulin into the bloodstream. Insulin helps glucose enter the body's cells to be used for energy. If all the glucose is not needed for energy, some of it is stored in fat cells and in the liver as glycogen. As sugar moves from the blood to the cells, the blood glucose level returns to a normal between-meal range. Several hormones and processes help regulate the blood sugar level and keep it within a certain range (70 mg/dL to 120 mg/dL). When the blood sugar level falls below that range, which may happen between meals, the body has at least three ways of reacting: Cells in the pancreas can release glucagon, a hormone that signals the b Continue reading >>

What Is Glucose?

What Is Glucose?

Glucose comes from the Greek word for "sweet." It's a type of sugar you get from foods you eat, and your body uses it for energy. As it travels through your bloodstream to your cells, it's called blood glucose or blood sugar. Insulin is a hormone that moves glucose from your blood into the cells for energy and storage. People with diabetes have higher-than-normal levels in their blood. Either they don't have enough insulin to move it through or their cells don't respond to insulin as well as they should. High blood glucose for a long period of time can damage your kidneys, eyes, and other organs. How Your Body Makes Glucose It mainly comes from foods rich in carbohydrates, like bread, potatoes, and fruit. As you eat, food travels down your esophagus to your stomach. There, acids and enzymes break it down into tiny pieces. During that process, glucose is released. It goes into your intestines where it's absorbed. From there, it passes into your bloodstream. Once in the blood, insulin helps glucose get to your cells. Energy and Storage Your body is designed to keep the level of glucose in your blood constant. Beta cells in your pancreas monitor your blood sugar level every few seconds. When your blood glucose rises after you eat, the beta cells release insulin into your bloodstream. Insulin acts like a key, unlocking muscle, fat, and liver cells so glucose can get inside them. Most of the cells in your body use glucose along with amino acids (the building blocks of protein) and fats for energy. But it's the main source of fuel for your brain. Nerve cells and chemical messengers there need it to help them process information. Without it, your brain wouldn't be able to work well. After your body has used the energy it needs, the leftover glucose is stored in little bundles Continue reading >>

Gluconeogenesis

Gluconeogenesis

Gluconeogenesis (GNG) is a metabolic process of making glucose, a necessary body fuel, from non-carbohydrate sources such as protein (amino acids), lactate from the muscles and the glycerol component of fatty acids. Blood glucose levels must be maintained within a narrow range for good health. If blood sugar is too high, it results in tissue and organ damage. If it is too low, cellular respiration and energy production can suffer, especially if the body is "carbohydrate-adapted," meaning the body uses glucose as it's primary fuel. Therefore, the ability of the liver and kidneys to “make new sugar” and regulate blood sugar levels is critical. The main advantage of this process is that it helps the body maintain steady blood sugar levels when foods containing carbohydrates or stored sugars (glycogen reserves) are unavailable. Without gluconeogenesis, you wouldn't live very long, especially without food, as your body must have a constant and steady level of blood glucose to keep the brain and red blood cells going. Mold Test Kits Easy to Use, Fast Results Available Interpretive Lab Report moldtesting.com Glucose and Ignorance If you decide to stop eating, or you decide to follow a low carb ketogenic diet, carbohydrate intake drops. To make up for the missing carbohydrate in your diet, the liver creates the blood glucose it needs by breaking down the glycogen stored in your muscles and liver from your last meal. This process is called glycogenolysis. After about 30 hours with no food, a great deal of this stored glycogen is broken down, and the body must then begin making glucose by breaking down stored fatty acids or amino acids from the protein in your muscles. Some dietitians and trainers insist that this process is the reason that carbohydrates are "essential foods" Continue reading >>

The Liver And Blood Glucose Levels

The Liver And Blood Glucose Levels

Tweet Glucose is the key source of energy for the human body. Supply of this vital nutrient is carried through the bloodstream to many of the body’s cells. The liver produces, stores and releases glucose depending on the body’s need for glucose, a monosaccharide. This is primarily indicated by the hormones insulin - the main regulator of sugar in the blood - and glucagon. In fact, the liver acts as the body’s glucose reservoir and helps to keep your circulating blood sugar levels and other body fuels steady and constant. How the liver regulates blood glucose During absorption and digestion, the carbohydrates in the food you eat are reduced to their simplest form, glucose. Excess glucose is then removed from the blood, with the majority of it being converted into glycogen, the storage form of glucose, by the liver’s hepatic cells via a process called glycogenesis. Glycogenolysis When blood glucose concentration declines, the liver initiates glycogenolysis. The hepatic cells reconvert their glycogen stores into glucose, and continually release them into the blood until levels approach normal range. However, when blood glucose levels fall during a long fast, the body’s glycogen stores dwindle and additional sources of blood sugar are required. To help make up this shortfall, the liver, along with the kidneys, uses amino acids, lactic acid and glycerol to produce glucose. This process is known as gluconeogenesis. The liver may also convert other sugars such as sucrose, fructose, and galactose into glucose if your body’s glucose needs not being met by your diet. Ketones Ketones are alternative fuels that are produced by the liver from fats when sugar is in short supply. When your body’s glycogen storage runs low, the body starts conserving the sugar supplies fo Continue reading >>

Type 2 Diabetes: What Is It?

Type 2 Diabetes: What Is It?

When it comes to your body, you probably spend more time thinking about your hair than your hormones. For some people, though, a problem with a hormone called insulin causes a health condition called type 2 diabetes (pronounced: dye-uh-BEE-tees). Diabetes is a disease that affects how the body uses glucose (pronounced: GLOO-kose), a sugar that is the body's main source of fuel. Your body needs glucose to keep running. Here's how it should work: Glucose from the food gets into your bloodstream. Your pancreas makes a hormone called insulin (pronounced: IN-suh-lin). Insulin helps the glucose get into the body's cells. The pancreas is a long, flat gland in your belly that helps your body digest food. It also makes insulin. Insulin is like a key that opens the doors to the cells of the body. It lets the glucose in. Then the glucose can move out of the blood and into the cells. But if someone has diabetes, either the body can't make insulin or the insulin doesn't work in the body like it should. The glucose can't get into the cells normally, so the blood sugar level gets too high. Lots of sugar in the blood makes people sick if they don't get treatment. There are two major types of diabetes: type 1 and type 2. Each type causes high blood sugar levels in a different way. In type 1 diabetes , the pancreas can't make insulin. The body can still get glucose from food, but the glucose can't get into the cells, where it's needed, and glucose stays in the blood. This makes the blood sugar level very high. With type 2 diabetes, the body still makes insulin. But a person with type 2 diabetes doesn't respond normally to the insulin the body makes. So glucose is less able to enter the cells and do its job of supplying energy. When glucose can't enter the cells in this way, doctors call Continue reading >>

Everything You Need To Know About Glucose

Everything You Need To Know About Glucose

You may know glucose by another name: blood sugar. Glucose is key to keeping the mechanisms of the body in top working order. When our glucose levels are optimal, it often goes unnoticed. But when they stray from recommended boundaries, you’ll notice the unhealthy effect it has on normal functioning. So what is glucose, exactly? It’s the simplest of the carbohydrates, making it a monosaccharide. This means it has one sugar. It’s not alone. Other monosaccharides include fructose, galactose, and ribose. Along with fat, glucose is one of the body’s preferred sources of fuel in the form of carbohydrates. People get glucose from bread, fruits, vegetables, and dairy products. You need food to create the energy that helps keep you alive. While glucose is important, like with so many things, it’s best in moderation. Glucose levels that are unhealthy or out of control can have permanent and serious effects. Our body processes glucose multiple times a day, ideally. When we eat, our body immediately starts working to process glucose. Enzymes start the breakdown process with help from the pancreas. The pancreas, which produces hormones including insulin, is an integral part of how our body deals with glucose. When we eat, our body tips the pancreas off that it needs to release insulin to deal with the rising blood sugar level. Some people, however, can’t rely on their pancreas to jump in and do the work it’s supposed to do. One way diabetes occurs is when the pancreas doesn’t produce insulin in the way it should. In this case, people need outside help (insulin injections) to process and regulate glucose in the body. Another cause of diabetes is insulin resistance, where the liver doesn’t recognize insulin that’s in the body and continues to make inappropriate am Continue reading >>

Suppress Blood Sugar Without Drugs

Suppress Blood Sugar Without Drugs

The research is conclusive—the longer you wait to tame age-related blood sugar increases, the greater your odds of succumbing to diabetes and its associated increased risk of heart attack, stroke, kidney failure, cancer, and blindness.1-3 For the majority of aging individuals,urgent action is needed.1,2 The public has not yet recognized the magnitude of damage inflicted after consumption of what most consider only a moderate amount of starch or sugar. A widely publicized study showed that drinking just one 12-ounce sugar-sweetened soda daily resulted in an 18-22% increased risk of type II diabetes.4 While health-conscious people may avoid sodas, there are so many glucose-spiking foods in our diets that virtually none of us are immune. Hard science reveals that fasting blood sugar above 85 mg/dL is associated with increased risks of death and disease. Unfortunately, most adult glucose levels are well above this range.1,2,5 Aging humans should take assertive steps before eating carbohydrates to impede the absorption of glucose into their bloodstream. Just as important, however, is the need to suppress excess production of glucose in our liver and to improve uptake of blood glucose into our muscle cells as opposed to it being stored as fat. The breaking news for those who want to avoid drugs is the discovery of three plant-derived nutrients that target underlying reasons why 80% of American adults today have higher than optimal glucose levels.6 The July 3, 2013 issue of the Journal of the American Medical Association (JAMA) examined the impact of fructose on human health.7 High-fructose corn syrup represents over 40% of caloric sweeteners added to foods and beverages. It’s often the sole caloric sweetener in soft drinks in the United States.8 The digestion and metaboli Continue reading >>

More in ketosis