diabetestalk.net

Can You Make Glucose From Amino Acids?

Share on facebook

What is GLUCONEOGENESIS? What does GLUCONEOGENESIS mean? GLUCONEOGENESIS meaning - GLUCONEOGENESIS definition - GLUCONEOGENESIS explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis) and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells. In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.

What Is Gluconeogenesis? How Does Does It Control Blood Sugars?

What is gluconeogenesis? How does does it control blood sugars? by breaknutrition | Sep 12, 2017 | Ketogenic Diets | 8 comments Step into the low-carb world and soon enough youll hear the term GlucoNeoGenesis. GNG for short, is your bodys ability to construct glucose, a kind of sugar, out of molecules that arent glucose. It does this to ensure that, if you dont eat any carbs, the cells in your body that need glucose will still get enough of it. Its one reason why humans are so good at fasting or delaying death from starvation for weeks or months. We can meet our own need for glucose by producing it ourselves. What do I mean by cells in your body that need glucose? I mean a reliance on glucose to accomplish its basic physiological tasks over a long time maybe a lifetime. You then might ask, but is there a difference when meeting your glucose needs with GNG versus by eating carbs? Fair question. You could also ask although no one seems to is it better to meet your glucose needs through GNG than by eating carbs? Also a fair question I think but one people will most likely scoff at. These questions deserve more space than Im according them here, so theyll have to be wrestled with in a Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

In this video I discuss what are amino acids, what are amino acids made of, and what do amino acids do in the body. I also cover what are peptide bonds, polypeptide chains, how amino acids form proteins, some functions of amino acids, and what are amino acids used to build. Transcript We are going to start by looking at the molecular structure of a typical amino acid, dont worry, I am going to make it easy to understand. The basic structure of amino acids is that they consist of a carboxyl group, a lone hydrogen atom, an amino group, and a side chain, which is often referred to as an R-group. The formation of the side chain is what makes amino acids different from one another. As you can see in this diagram, these 4 are all connected to a carbon atom, which is referred to as the alpha carbon. Not every amino acid follows this exact structure, but, most do. On the screen I have 3 different amino acids, lysine, tryptophan, and leucine. You can see that each has a carboxyl group, an alpha carbon, a amino group, and an R-group that is different from each other. There are 23 total amino acids that are proteinogenic. Proteinogenic amino acids are precursors to proteins, which means they are compounds that participate in a chemical reaction to produce another compound. Of these 23 amino acids, 20 of them are called standard amino acids, and the other 3 are non-standard amino acids. These are listed on the screen. In this video we are going to focus on the standard amino acids, as they are what make up proteins. These amino acids can be classified many different ways, we are going to classify them in a basic nutritional way. Essential and nonessential. Essential amino acids cannot be made by the body, so, they must come from foods we eat. Nonessential amino acids are amino acids that our bodies can produce even if we dont get them from the food we eat. There is a subgroup of nonessential amino acids that are considered to be conditional amino acids. The list of conditional amino acids is not definitive. For instance, in times of illness or stress, there are certain amino acids the body cant produce sufficiently, and children's bodys havent developed the ability to produce certain amino acids yet. There are 9 essential and 11 nonessential amino acids, ive listed them on the screen. So, how do amino acids form proteins? Proteins are built from the 20 standard amino acids. Well, the first thing that happens is that 2 amino acids come together to form a peptide bond. A peptide bond is when the carboxyl group of one amino acid bonds with the amino group of another amino acid, as you can see here. If you notice 2 hydrogen atoms and one oxygen atom have been removed from the peptide bonding process. So, the peptide bonding results in the release of a water moleculeh20. But, we are not finished. More amino acids can link in, and form what is called a polypeptide chain. Some proteins are single polypeptide chains, and other proteins have polypeptide chains linked together. Not all protein contains all 20 of the standard amino acids. Not all protein contains all 20 of the standard amino acids. Proteins are often labeled as complete or incomplete protein. A Complete protein is a protein source that contains a sufficient quantity of all 9 of the essential amino acids that we discussed earlier. An incomplete protein does not contain a sufficient quantity of all 9 of the essential amino acids. Complete protein foods includeanimal foods such as red meat, poultry, pork and fish. Eggs and dairy products such as cows milk, yogurt, and cheese. Plant foods such as soy products, black beans, kidney beans, pumpkin seeds, quinoa, pistachios, just to name a few. You can also combine incomplete protein foods to create a complete protein meal. Amino acids also make up most enzymes. These Enzymes are proteins, so they are made by linking amino acids together in a specific and unique order. This chain of amino acids then forms a unique shape that allows the enzyme created to serve a single specific purpose. Enzymes function as catalysts, which means that they speed up the rate at which metabolic processed and reactions occur. Amino acids can also be metabolized for energy. Some hormones like epinephrine, also known as adrenaline, are amino acid derived. Some neurotransmitters like serotonin are derived from amino acids. The amino acid arginine is a precursor of nitric oxide, which helps regulate blood pressure, improves sleep quality and increases endurance and strength. Glutathione, which is a powerful antioxidant is formed from amino acids. Other sources... https://en.wikipedia.org/wiki/Amino_acid http://www.fitday.com/fitness-article... http://www.ivyroses.com/HumanBiology/...

Glucogenic Amino Acids

DOUGLAS C. HEIMBURGER MD, in Handbook of Clinical Nutrition (Fourth Edition) , 2006 The major aim of protein catabolism during a state of starvation is to provide the glucogenic amino acids (especially alanine and glutamine) that serve as substrates for endogenous glucose production (gluconeogenesis) in the liver. In the hypometabolic/starved state, protein breakdown for gluconeogenesis is minimized, especially as ketones become the substrate preferred by certain tissues. In the hypermetabolic/stress state, gluconeogenesis increases dramatically and in proportion to the degree of the insult to increase the supply of glucose (the major fuel of reparation). Glucose is the only fuel that can be utilized by hypoxic tissues (anaerobic glycolysis), by phagocytosing (bacteria-killing) white cells, and by young fibroblasts. Infusions of glucose partially offset a negative energy balance but do not significantly suppress the high rates of gluconeogenesis in the catabolic patient. Hence, adequate supplies of protein are needed to replace the amino acids utilized for this metabolic response. In summary, the two physiologic states represent different responses to starvation. The hypometabolic Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

This video explains how amino acid nitrogen is transported from peripheral tissue proteins specially skeletal muscle to liver for further processing. This video explains the role of amino acid alanine in transporting amino acid nitrogen from muscle proteolysis to the liver for urea formation. Many thanks to my student Javid Taghados for meticulously recording this video.

Glucose-alanine Cycle: Contents In Brief

The glucose-alanine cycle, or Cahill cycle, proposed for the first time by Mallette, Exton and Park, and Felig et al. between 1969 and 1970, consists of a series of steps through which extrahepatic tissues, for example the skeletal muscle, export pyruvate and amino groups as alanine to the liver, and receive glucose fromthe liver via the bloodstream. The main steps of the glucose-alanine cycle are summarized below. When in extrahepatic tissues amino acids are used for energy, pyruvate, derived from the glycolytic pathway , is used as amino group acceptor, forming alanine, a nonessential amino acid. Alanine diffuses into the bloodstream and reaches the liver. In the liver, the amino group of alanine is transferred to -ketoglutarate to form pyruvate and glutamate, respectively. The amino groupof glutamate mostly enters the urea cycle, and in part acts as a nitrogen donor in many biosynthetic pathways. Pyruvate enters the gluconeogenesis pathway and is used for glucose synthesis. The newly formed glucose diffuses into the bloodstream and reaches the peripheral tissues where, due to glycolysis , is converted into pyruvate that can accept amino groups from the free amino acids, thus cl Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    Sort What is ketosis? The body's shift to ketosis allows us to survive starvation for longer periods of time (otherwise we would die in about 3 weeks). Why is this? Ketosis occurs the body adapts to fasting by combining acetyl CoA fragments derived from fatty acids to produce an alternate energy source, ketone bodies. Ketone bodies can efficiently provide fuel for brain cells. Ketone body production rises until, after about 10 days of fasting, it ...

    ketosis Apr 2, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    See also: Protein (nutrient) An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized de novo (from scratch) by the organism, and thus must be supplied in its diet. The nine amino acids humans cannot synthesize are phenylalanine, valine, threonine, tryptophan, methionine, leucine, isoleucine, lysine, and histidine (i.e., F V T W M L I K H).[1][2] Six other amino acids are considered conditionally essential ...

    ketosis Apr 1, 2018
  • Why Can't Ketogenic Amino Acids Make Glucose

    Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within an orange box Ketogenesis is the biochemical process by which organisms produce a group of substances collectively known as ketone bodies by the breakdown of fatty acids and ketogenic amino acids.[1][2] This process supplies energy to certain organs (particularly the brain) under circumstances such as fasting, but insufficient ketogen ...

    ketosis Apr 24, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids.

    Our current examination of proteins and amino acids will cover the metabolism of the protein we eat, dietary protein, and catabolic situations in the body. Amino acids are the "building-blocks" of proteins. Proteins, from the Greek word meaning "of prime importance," constitute an array of structures. Examples of these structures include hormones, enzymes, and muscle tissue. The primary function of protein is growth and repair of body tissue (an ...

    ketosis Apr 1, 2018
  • Can You Make Glucose From Amino Acids?

    DOUGLAS C. HEIMBURGER MD, in Handbook of Clinical Nutrition (Fourth Edition) , 2006 The major aim of protein catabolism during a state of starvation is to provide the glucogenic amino acids (especially alanine and glutamine) that serve as substrates for endogenous glucose production (gluconeogenesis) in the liver. In the hypometabolic/starved state, protein breakdown for gluconeogenesis is minimized, especially as ketones become the substrate pr ...

    ketosis Apr 21, 2018
  • Fatty Acids And Amino Acids Produce Far Less Atp Than One Glucose Molecule.

    Sort ATP production by direct transfer of a phosphate group from a phosphate-containing molecule to ADP is called __________. A.)substrate-level phosphorylation B.)oxidation-reduction reaction C.)oxidative phosphorylation D.)citric acid cycle A.)substrate-level phosphorylation The sum of all biochemical reactions that take place in the human body at any given time is called __________. A.)phosphorylation B.)anabolism C.)catabolism D.)metabolism D ...

    ketosis Mar 29, 2018

More in ketosis