diabetestalk.net

Can Vomiting Cause Metabolic Acidosis?

Metabolic Acidosis And Alkalosis

Metabolic Acidosis And Alkalosis

Page Index Metabolic Acidosis. Metabolic Alkalosis Emergency Therapy Treating Metabolic Acidosis Calculating the Dose Use Half the Calculated Dose Reasons to Limit the Bicarbonate Dose: Injected into Plasma Volume Fizzes with Acid Causes Respiratory Acidosis Raises Intracellular PCO2 Subsequent Residual Changes Metabolic Acidosis. The following is a brief summary. For additional information visit: E-Medicine (Christie Thomas) or Wikepedia Etiology: There are many causes of primary metabolic acidosis and they are commonly classified by the anion gap: Metabolic Acidosis with a Normal Anion Gap: Longstanding diarrhea (bicarbonate loss) Uretero-sigmoidostomy Pancreatic fistula Renal Tubular Acidosis Intoxication, e.g., ammonium chloride, acetazolamide, bile acid sequestrants Renal failure Metabolic Acidosis with an Elevated Anion Gap: lactic acidosis ketoacidosis chronic renal failure (accumulation of sulfates, phosphates, uric acid) intoxication, e.g., salicylates, ethanol, methanol, formaldehyde, ethylene glycol, paraldehyde, INH, toluene, sulfates, metformin. rhabdomyolysis For further details visit: E-Medicine (Christie Thomas). Treating Severe Metabolic Acidosis. The ideal treatment for metabolic acidosis is correction of the underlying cause. When urgency dictates more rapid correction, treatment is based on clinical considerations, supported by laboratory evidence. The best measure of the level of metabolic acidosis is the Standard Base Excess (SBE) because it is independent of PCO2. If it is decided to administer bicarbonate, the SBE and the size of the treatable space are used to calculate the dose required: Metabolic Alkalosis Etiology: Primary Metabolic alkalosis may occur from various causes including: Loss of acid via the urine, stools, or vomiting Transfer of Continue reading >>

Acid-base Disturbances In Gastrointestinal Disease

Acid-base Disturbances In Gastrointestinal Disease

Acid-Base Disturbances in Gastrointestinal Disease Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont Dr. F. John Gennari, 2319 Rehab, UHC Campus, Fletcher Allen Health Care, Burlington, VT 05401. Phone: 802-847-2534; Fax: 802-847-8736; E-mail: fgennari{at}uvm.edu Disruption of normal gastrointestinal function as a result of infection, hereditary or acquired diseases, or complications of surgical procedures uncovers its important role in acid-base homeostasis. Metabolic acidosis or alkalosis may occur, depending on the nature and volume of the unregulated losses that occur. Investigation into the specific pathophysiology of gastrointestinal disorders has provided important new insights into the normal physiology of ion transport along the gut and has also provided new avenues for treatment. This review provides a brief overview of normal ion transport along the gut and then discusses the pathophysiology and treatment of the metabolic acid-base disorders that occur when normal gut function is disrupted. The gastrointestinal tract is a slumbering giant with regard to acid-base homeostasis. Large amounts of H+ and HCO3 traverse the specialized epithelia of the various components of the gut every day, but under normal conditions, only a small amount of alkali (approximately 30 to 40 mmol) is lost in the stool ( 1 , 2 ). In contrast to the kidney, acid and alkali transport in the gut is adjusted for efficient absorption of dietary constituents rather than for acid-base homeostasis. The small amount of alkali lost as a byproduct of these transport events is easily regenerated by renal net acid excretion, which is regulated by the kidney to maintain body alkali stores. Disruption of normal gut function, however, uncovers its power to overwh Continue reading >>

What Is Metabolic Acidosis?

What Is Metabolic Acidosis?

Metabolic acidosis happens when the chemical balance of acids and bases in your blood gets thrown off. Your body: Is making too much acid Isn't getting rid of enough acid Doesn't have enough base to offset a normal amount of acid When any of these happen, chemical reactions and processes in your body don't work right. Although severe episodes can be life-threatening, sometimes metabolic acidosis is a mild condition. You can treat it, but how depends on what's causing it. Causes of Metabolic Acidosis Different things can set up an acid-base imbalance in your blood. Ketoacidosis. When you have diabetes and don't get enough insulin and get dehydrated, your body burns fat instead of carbs as fuel, and that makes ketones. Lots of ketones in your blood turn it acidic. People who drink a lot of alcohol for a long time and don't eat enough also build up ketones. It can happen when you aren't eating at all, too. Lactic acidosis. The cells in your body make lactic acid when they don't have a lot of oxygen to use. This acid can build up, too. It might happen when you're exercising intensely. Big drops in blood pressure, heart failure, cardiac arrest, and an overwhelming infection can also cause it. Renal tubular acidosis. Healthy kidneys take acids out of your blood and get rid of them in your pee. Kidney diseases as well as some immune system and genetic disorders can damage kidneys so they leave too much acid in your blood. Hyperchloremic acidosis. Severe diarrhea, laxative abuse, and kidney problems can cause lower levels of bicarbonate, the base that helps neutralize acids in blood. Respiratory acidosis also results in blood that's too acidic. But it starts in a different way, when your body has too much carbon dioxide because of a problem with your lungs. Continue reading >>

Disorders Of Acid-base Balance

Disorders Of Acid-base Balance

Module 10: Fluid, Electrolyte, and Acid-Base Balance By the end of this section, you will be able to: Identify the three blood variables considered when making a diagnosis of acidosis or alkalosis Identify the source of compensation for blood pH problems of a respiratory origin Identify the source of compensation for blood pH problems of a metabolic/renal origin Normal arterial blood pH is restricted to a very narrow range of 7.35 to 7.45. A person who has a blood pH below 7.35 is considered to be in acidosis (actually, physiological acidosis, because blood is not truly acidic until its pH drops below 7), and a continuous blood pH below 7.0 can be fatal. Acidosis has several symptoms, including headache and confusion, and the individual can become lethargic and easily fatigued. A person who has a blood pH above 7.45 is considered to be in alkalosis, and a pH above 7.8 is fatal. Some symptoms of alkalosis include cognitive impairment (which can progress to unconsciousness), tingling or numbness in the extremities, muscle twitching and spasm, and nausea and vomiting. Both acidosis and alkalosis can be caused by either metabolic or respiratory disorders. As discussed earlier in this chapter, the concentration of carbonic acid in the blood is dependent on the level of CO2 in the body and the amount of CO2 gas exhaled through the lungs. Thus, the respiratory contribution to acid-base balance is usually discussed in terms of CO2 (rather than of carbonic acid). Remember that a molecule of carbonic acid is lost for every molecule of CO2 exhaled, and a molecule of carbonic acid is formed for every molecule of CO2 retained. Figure 1. Symptoms of acidosis affect several organ systems. Both acidosis and alkalosis can be diagnosed using a blood test. Metabolic Acidosis: Primary Bic Continue reading >>

Metabolic Alkalosis

Metabolic Alkalosis

Abstract: Metabolic alkalosis commonly results from excessive HCl, K+ and H2O loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalency on albumin, and the free ionized Ca++ content of plasma decreases. The [HCO3−]/(S × Pco2) ratio is increased in metabolic alkalosis. The bicarbonate buffer equation is shifted to the right (CO2 + H2O → H2CO3 → H+ + HCO3−) in metabolic alkalosis. The kidneys excrete excess HCO3 − into urine during a metabolic alkalosis. Hypokalemia and kaliuresis are common complications of metabolic alkalosis. Patients with metabolic alkalosis are predisposed to cardiac arrhythmias. Post-hypercapnic metabolic alkalosis can occur in a patient with respiratory acidosis who is mechanically ventilated. Contraction alkalosis can occur in patients who are being treated with loop or thiazide diuretics. A free water deficit leads to a concentration alkalosis. Introduction Metabolic alkalosis is principally an electrolyte disorder that is accompanied by changes in acid–base parameters in plasma, namely an elevated concentration of bicarbonate (HCO3−) ions (PHCO3) and elevated pH. Most patients with metabolic alkalosis have a deficit of chloride (Cl−)-containing compounds: sodium chloride (NaCl), potassium chloride (KCl) and/or hydrochloric acid (HCl). A deficit of NaCl raises the PHCO3 primarily by lowering the extracellular fluid (ECF) volume, whereas a deficit of HCl or KCl raises the PHCO3 by adding new HCO3− ions to the body. In some patients, however, metabolic alkalosis may be due to the retention of NaHCO3. For example, patients with disorders causing primary high mineralocorticoid activity may develop metabolic alkalosis due to t Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is a condition that occurs when the body produces excessive quantities of acid or when the kidneys are not removing enough acid from the body. If unchecked, metabolic acidosis leads to acidemia, i.e., blood pH is low (less than 7.35) due to increased production of hydrogen ions by the body or the inability of the body to form bicarbonate (HCO3−) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general causes of acidemia. Terminology : Acidosis refers to a process that causes a low pH in blood and tissues. Acidemia refers specifically to a low pH in the blood. In most cases, acidosis occurs first for reasons explained below. Free hydrogen ions then diffuse into the blood, lowering the pH. Arterial blood gas analysis detects acidemia (pH lower than 7.35). When acidemia is present, acidosis is presumed. Signs and symptoms[edit] Symptoms are not specific, and diagnosis can be difficult unless the patient presents with clear indications for arterial blood gas sampling. Symptoms may include chest pain, palpitations, headache, altered mental status such as severe anxiety due to hypoxia, decreased visual acuity, nausea, vomiting, abdominal pain, altered appetite and weight gain, muscle weakness, bone pain, and joint pain. Those in metabolic acidosis may exhibit deep, rapid breathing called Kussmaul respirations which is classically associated with diabetic ketoacidosis. Rapid deep breaths increase the amount of carbon dioxide exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur. Extreme acidemia leads to neurological and cardia Continue reading >>

Metabolic Acidosis Question!!

Metabolic Acidosis Question!!

If the patient is having a gastritis? is this metabolic acidosis? and if the patient is having pulmonary embolism? is that respiratory acidosis? Metabolic experts Please help me to understand this concept! Gastritis--> vomiting-->Metabolic AHHHHLKalosis. for your pulmonary question, i would say time matters. they are usually in acidosis before they go into alkalosis Gastritis--> vomiting-->Metabolic AHHHHLKalosis. for your pulmonary question, i would say time matters. they are usually in acidosis before they go into alkalosis I love this! Very easy to remember. I always have to think "OK, vomiting means you're losing stomach acid. If you lose acid, then you have too much base = alkalosis" or "Diarrhea means you're losing base. If you lose base, then you have too much acid = acidosis". Much easier to remember AHHHLKalosis & ASSSidosis I'm also going to leave you with GrnTea's wonderful ABGs Made Simple post. This got me through nursing school !!! While some of this appears in other places on the net, I wrote it first , and I hope it is as helpful to you as it has been for many others. You want simple ABGs? Piece o' cake. People who have seen this before, well, just scroll on by. Newbies who want a brief ABG's refresher, take out your pencils and a piece of paper, cuz you'll need to do a bit of drawing . I taught ABG interpretation for yrs in a way that made it pretty foolproof. You will make your own key to interpret ABG's, and will be able to reproduce it from memory any time you need to with very little trouble if you learn a very few **key concepts**, labeled **thus**.. Take a piece of paper. Make a big box on it, then draw vertical and horizontal lines on it so you have four boxes. I will try to make this come out, but...you should have where the four boxes a,b,c Continue reading >>

Acidosis

Acidosis

When your body fluids contain too much acid, it’s known as acidosis. Acidosis occurs when your kidneys and lungs can’t keep your body’s pH in balance. Many of the body’s processes produce acid. Your lungs and kidneys can usually compensate for slight pH imbalances, but problems with these organs can lead to excess acid accumulating in your body. The acidity of your blood is measured by determining its pH. A lower pH means that your blood is more acidic, while a higher pH means that your blood is more basic. The pH of your blood should be around 7.4. According to the American Association for Clinical Chemistry (AACC), acidosis is characterized by a pH of 7.35 or lower. Alkalosis is characterized by a pH level of 7.45 or higher. While seemingly slight, these numerical differences can be serious. Acidosis can lead to numerous health issues, and it can even be life-threatening. There are two types of acidosis, each with various causes. The type of acidosis is categorized as either respiratory acidosis or metabolic acidosis, depending on the primary cause of your acidosis. Respiratory acidosis Respiratory acidosis occurs when too much CO2 builds up in the body. Normally, the lungs remove CO2 while you breathe. However, sometimes your body can’t get rid of enough CO2. This may happen due to: chronic airway conditions, like asthma injury to the chest obesity, which can make breathing difficult sedative misuse deformed chest structure Metabolic acidosis Metabolic acidosis starts in the kidneys instead of the lungs. It occurs when they can’t eliminate enough acid or when they get rid of too much base. There are three major forms of metabolic acidosis: Diabetic acidosis occurs in people with diabetes that’s poorly controlled. If your body lacks enough insulin, keton Continue reading >>

Metabolic Acidosis: Practice Essentials, Background, Etiology

Metabolic Acidosis: Practice Essentials, Background, Etiology

Metabolic acidosis is a clinical disturbance characterized by an increase in plasma acidity. Metabolic acidosis should be considered a sign of an underlying disease process. Identification of this underlying condition is essential to initiate appropriate therapy. (See Etiology, DDx, Workup, and Treatment.) Understanding the regulation of acid-base balance requires appreciation of the fundamental definitions and principles underlying this complex physiologic process. Go to Pediatric Metabolic Acidosis and Emergent Management of Metabolic Acidosis for complete information on those topics. An acid is a substance that can donate hydrogen ions (H+). A base is a substance that can accept H+ ions. The ion exchange occurs regardless of the substance's charge. Strong acids are those that are completely ionized in body fluids, and weak acids are those that are incompletely ionized in body fluids. Hydrochloric acid (HCl) is considered a strong acid because it is present only in a completely ionized form in the body, whereas carbonic acid (H2 CO3) is a weak acid because it is ionized incompletely, and, at equilibrium, all three reactants are present in body fluids. See the reactions below. The law of mass action states that the velocity of a reaction is proportional to the product of the reactant concentrations. On the basis of this law, the addition of H+ or bicarbonate (HCO3-) drives the reaction shown below to the left. In body fluids, the concentration of hydrogen ions ([H+]) is maintained within very narrow limits, with the normal physiologic concentration being 40 nEq/L. The concentration of HCO3- (24 mEq/L) is 600,000 times that of [H+]. The tight regulation of [H+] at this low concentration is crucial for normal cellular activities because H+ at higher concentrations can b Continue reading >>

Unraveling Metabolic Alkalosis: A Complex Case History

Unraveling Metabolic Alkalosis: A Complex Case History

Metabolic alkalosis, a disturbance of acid-base homeostasis, with many possible causes, is characterized by a primary increase in blood pH and bicarbonate (HCO3). Hypoventilation is the compensatory respiratory response to metabolic alkalosis that results in increased pCO2. The often complex nature of the etiology of metabolic alkalosis is nicely conveyed by a recently published case study report of severe metabolic alkalosis. This concerns a 64-year-old man who was brought to the emergency department of his local hospital by his sister after a 3-week history of worsening confusion, difficulty walking, lack of food intake, and vomiting. The patient has a long-term history of alcohol abuse, post-traumatic stress disorder, and gastroesophageal reflux disease. His sister reported that he had become more withdrawn over the past few weeks during which time his diet comprised only Pepsi and alcohol. Initial assessment revealed: acute kidney injury (serum creatinine 9.28 mg/dL (820 mmol/L) but within normal range a few months previously); hypokalemia (potassium 3.0 mmol/L); hypocalcemia (ionized calcium 0.75 mmol/L); severe hypochloremia (chloride 59 mmol/L). Blood gas results (pH 7.64, HCO3 62 mmol/L, pCO2 58 mmHg (7.7 kPa)) confirmed partially compensated severe metabolic alkalosis. This was complicated by a superimposed high-anion-gap metabolic acidosis secondary to acute renal failure and lactic acidosis. Much of this case study report is taken over to a helpful general discussion of the mechanisms that give rise to metabolic alkalosis and the diagnoses to be considered in assessing the patient who presents with metabolic alkalosis. The authors explain how this knowledge was applied in the assessment and care of their patient. In this case, hypovolemia, secondary to vomiti Continue reading >>

Metabolic Acidosis: Causes, Symptoms, And Treatment

Metabolic Acidosis: Causes, Symptoms, And Treatment

The Terrible Effects of Acid Acid corrosion is a well-known fact. Acid rain can peel the paint off of a car. Acidifying ocean water bleaches and destroys coral reefs. Acid can burn a giant hole through metal. It can also burn holes, called cavities, into your teeth. I think I've made my point. Acid, regardless of where it's at, is going to hurt. And when your body is full of acid, then it's going to destroy your fragile, soft, internal organs even more quickly than it can destroy your bony teeth and chunks of thick metal. What Is Metabolic Acidosis? The condition that fills your body with proportionately too much acid is known as metabolic acidosis. Metabolic acidosis refers to a physiological state characterized by an increase in the amount of acid produced or ingested by the body, the decreased renal excretion of acid, or bicarbonate loss from the body. Metabolism is a word that refers to a set of biochemical processes within your body that produce energy and sustain life. If these processes go haywire, due to disease, then they can cause an excess production of hydrogen (H+) ions. These ions are acidic, and therefore the level of acidity in your body increases, leading to acidemia, an abnormally low pH of the blood, <7.35. The pH of the blood mimics the overall physiological state in the body. In short, a metabolic process is like a power plant producing energy. If a nuclear power plant goes haywire for any reason, then we know what the consequences will be: uncontrolled and excessive nuclear energetic reactions leading to the leakage of large amounts of radioactive material out into the environment. In our body, this radioactive material is acid (or hydrogen ions). Acidemia can also occur if the kidneys are sick and they do not excrete enough hydrogen ions out of th Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic Acidosis Definition Metabolic acidosis is a pH imbalance in which the body has accumulated too much acid and does not have enough bicarbonate to effectively neutralize the effects of the acid. Description Metabolic acidosis, as a disruption of the body's acid/base balance, can be a mild symptom brought on by a lack of insulin, a starvation diet, or a gastrointestinal disorder like vomiting and diarrhea. Metabolic acidosis can indicate a more serious problem with a major organ like the liver, heart, or kidneys. It can also be one of the first signs of drug overdose or poisoning. Causes and symptoms Metabolic acidosis occurs when the body has more acid than base in it. Chemists use the term "pH" to describe how acidic or basic a substance is. Based on a scale of 14, a pH of 7.0 is neutral. A pH below 7.0 is an acid; the lower the number, the stronger the acid. A pH above 7.0 is a base; the higher the number, the stronger the base. Blood pH is slightly basic (alkaline), with a normal range of 7.36-7.44. Acid is a natural by-product of the breakdown of fats and other processes in the body; however, in some conditions, the body does not have enough bicarbonate, an acid neutralizer, to balance the acids produced. This can occur when the body uses fats for energy instead of carbohydrates. Conditions where metabolic acidosis can occur include chronic alcoholism, malnutrition, and diabetic ketoacidosis. Consuming a diet low in carbohydrates and high in fats can also produce metabolic acidosis. The disorder may also be a symptom of another condition like kidney failure, liver failure, or severe diarrhea. The build up of lactic acid in the blood due to such conditions as heart failure, shock, or cancer, induces metabolic acidosis. Some poisonings and overdoses (aspirin, Continue reading >>

A Patient Presenting With Metabolic Acidosis Despite Severe Vomiting--correctdiagnosis By Use Of The Physical-chemical Approach.

A Patient Presenting With Metabolic Acidosis Despite Severe Vomiting--correctdiagnosis By Use Of The Physical-chemical Approach.

1. Am J Emerg Med. 2013 Jun;31(6):995.e1-2. doi: 10.1016/j.ajem.2013.01.022. Epub2013 Mar 7. A patient presenting with metabolic acidosis despite severe vomiting--correctdiagnosis by use of the physical-chemical approach. Lindner G(1), Pfortmller C, Exadaktylos AK. (1)Department of Internal Medicine, Inselspital, University Hospital Bern, Switzerland. [email protected] Erratum in Am J Emerg Med. 2013 Oct;31(10):1535. We describe the case of a 28-year-old otherwise healthy woman who presents to ouremergency department with nausea for 2 days and severe vomiting for 1 day. Shehas no history of travel, and her medical history is unremarkable. The physicalexamination shows a soft and nontender abdomen. Laboratory examinations revealthe presence of significant metabolic alkalosis despite the severe vomiting ofthe patient. Hypochloremic alkalosis would be expected to be present in thispatient. We explain how to correctly identify the rare cause of metabolicacidosis present in this patient using the physicochemical approach (Stewartsapproach) for the analysis of human acid-base disorders. Continue reading >>

Metabolic Alkalosis

Metabolic Alkalosis

Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations. Terminology[edit] Alkalosis refers to a process by which the pH is increased. Alkalemia refers to a pH which is higher than normal, specifically in the blood. Causes[edit] The causes of metabolic alkalosis can be divided into two categories, depending upon urine chloride levels.[1] Chloride-responsive (Urine chloride < 10 mEq/L)[edit] Loss of hydrogen ions - Most often occurs via two mechanisms, either vomiting or via the kidney. Vomiting results in the loss of hydrochloric acid (hydrogen and chloride ions) with the stomach contents. In the hospital setting this can commonly occur from nasogastric suction tubes. Severe vomiting also causes loss of potassium (hypokalaemia) and sodium (hyponatremia). The kidneys compensate for these losses by retaining sodium in the collecting ducts at the expense of hydrogen ions (sparing sodium/potassium pumps to prevent further loss of potassium), leading to metabolic alkalosis.[2] Congenital chloride diarrhea - rare for being a diarrhea that causes alkalosis instead of acidosis.[3] Contraction alkalosis - This results from a loss of water in the extracellular space, such as from dehydration. Decreased extracellular volume triggers the renin-angiotensin-aldosterone system, and aldosterone subsequently stimulates reabsorption of sodium (and thus water) within the nephron of the kidney. However, a second action of aldosterone is to stimulate renal excretion of hydrogen ions (while retaining bicarbonate), and it is this loss of hydrogen ions that raises Continue reading >>

Alkalosis

Alkalosis

The kidneys and lungs maintain the proper balance (proper pH level) of chemicals called acids and bases in the body. Decreased carbon dioxide (an acid) level or increased bicarbonate (a base) level makes the body too alkaline, a condition called alkalosis. There are different types of alkalosis. These are described below. Respiratory alkalosis is caused by a low carbon dioxide level in the blood. This can be due to: Fever Being at a high altitude Lack of oxygen Liver disease Metabolic alkalosis is caused by too much bicarbonate in the blood. It can also occur due to certain kidney diseases. Hypochloremic alkalosis is caused by an extreme lack or loss of chloride, such as from prolonged vomiting. Hypokalemic alkalosis is caused by the kidneys' response to an extreme lack or loss of potassium. This can occur from taking certain water pills (diuretics). Compensated alkalosis occurs when the body returns the acid-base balance to normal in cases of alkalosis, but bicarbonate and carbon dioxide levels remain abnormal. Continue reading >>

More in ketosis