diabetestalk.net

Can The Body Produce Glucose From Fat?

Share on facebook

- OPEN FOR MORE + FREE RECIPES - Download our FREE Vegan Recipe ebook: http://bit.ly/SSVTop20 How To Start a Blog: http://sweetsimplevegan.com/2015/04/h... Wholesale Produce Market FAQ & Info: http://sweetsimplevegan.com/wholesale... Check out these awesome people Mindful Diabetic Robby: https://www.youtube.com/user/mindfuld... Vegetaryn: https://www.youtube.com/user/vegetary... - CONNECT WITH ME - instagram: http://instagram.com/sweetsimplevegan merchandise: http://shop.sweetsimplevegan.com free recipes & ebook: http://sweetsimplevegan.com facebook: http://facebook.com/sweetsimplevegan email: [email protected] discounted groceries w/ a free 30 day trial + a free bag of cacao powder: http://thrv.me/sweetsimplevegan-cacao... - ABOUT MY VIDEO - Cameras: -Canon G7X Mark ii: http://amzn.to/1QDH3cU -Canon 80D: http://amzn.to/2k3PFWQ Edited on: Final Cut Pro Music: X I X X - Juice Box This video may contain affiliate links, which simply means that I earn a commission if you purchase through those links, but your price remains the same. Thank you for supporting Sweet Simple Vegan! Intro: http://www.shannonclairehickman.com/

Why Can't Fat Produce Glucose?

Tousief Irshad Ahmed Sirwal Author has 77 answers and 106.2k answer views Acetyl CoA is NOT a substrate for gluconeogenesis in animals 1. Pyruvate dehydrogenase reaction is irreversible. So, acetyl CoA cannot be converted back to pyruvate. 2. 2C Acetyl CoA enters the TCA cycle by condensing with 4C oxaloacetate. 2 molecules of CO2 are released & the oxaloacetate is regenerated. There is no NET production of oxaloacetate. Animals cannot convert fat into glucose with minimal exceptions 1. Propionyl CoA derived from odd chain fatty acids are converted to Succinyl CoA Glucogenic 2. Glycerol derived from triglycerides are glucogenic. Answered Mar 26, 2017 Author has 942 answers and 259.1k answer views Yijia Xiong pointed out that the glycerol portion of triglycerides (fats) can indeed be converted to glucose. It is not so energy-inefficient that it is avoided by our bodies. If nutritionally, we are in a gluconeogenesis mode (building up glucose stores rather than consuming them), glycerol would be a perfectly acceptable precursor. However, I think the original question had more to do with the vast bulk of the triglycerides that are not glycerol, but are fatty acids. And it is true that Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more
Share on facebook

What is GLUCONEOGENESIS? What does GLUCONEOGENESIS mean? GLUCONEOGENESIS meaning - GLUCONEOGENESIS definition - GLUCONEOGENESIS explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis) and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells. In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.

Gluconeogenesis

Gluconeogenesis (GNG) is a metabolic process of making glucose, a necessary body fuel, from non-carbohydrate sources such as protein (amino acids), lactate from the muscles and the glycerol component of fatty acids. Blood glucose levels must be maintained within a narrow range for good health. If blood sugar is too high, it results in tissue and organ damage. If it is too low, cellular respiration and energy production can suffer, especially if the body is "carbohydrate-adapted," meaning the body uses glucose as it's primary fuel. Therefore, the ability of the liver and kidneys to “make new sugar” and regulate blood sugar levels is critical. The main advantage of this process is that it helps the body maintain steady blood sugar levels when foods containing carbohydrates or stored sugars (glycogen reserves) are unavailable. Without gluconeogenesis, you wouldn't live very long, especially without food, as your body must have a constant and steady level of blood glucose to keep the brain and red blood cells going. Mold Test Kits Easy to Use, Fast Results Available Interpretive Lab Report moldtesting.com Glucose and Ignorance If you decide to stop eating, or you decide to follow a Continue reading >>

Share on facebook

Popular Questions

  1. messenger

    can the body produce its own glucose

    hi all
    i am interested to learn if the body can produce its own glucose, or does all the glucose come from what we eat.
    peter

  2. plum

    I guess,it does produce.Have u heard of stress elevating sugar levels? It is true.Stress,trauma & anxiety do elevate glucose levels whether u have eaten carb or not.

  3. Stump86

    The laws of physics dictate that we cannot make energy from nothing. But your body can create glucose from other things (fats and proteins) This is called gluconeogenesis (creating new glucose).
    So the answer to your question is yes the body can produce it's own glucose but also yes it all comes from what we eat, (we also eat fats and proteins)

  4. -> Continue reading
read more
Share on facebook

There has been much debate on the subject of the body"s preferred fuel source. This is my take on the topic. The Bio chemistry text book where this info came from: https://www.ncbi.nlm.nih.gov/books/NB... Instagram: https://instagram.com/ketobrainbrian

Fat For Fuel: Why Dietary Fat, Not Glucose, Is The Preferred Body Fuel

Contrary to popular belief, glucose is NOT the preferred fuel of human metabolism; the fact is that burning dietary fat for fuel may actually be the key to optimal health Carbohydrate intake is the primary factor that determines your body's fat ratio, and processed grains and sugars (particularly fructose) are the primary culprits behind our skyrocketing obesity and diabetes rates According to experts, carbs should make up only 20 percent of your diet, while 50-70 percent of your diet should be healthy fats. Fat is far more satiating than carbs, so if you have cut down on carbs and feel ravenous, this is a sign that you need more healthy fat to burn for fuel By Dr. Mercola While we may consider ourselves to be at the pinnacle of human development, our modern food manufacturing processes have utterly failed at improving health and increasing longevity. During the Paleolithic period, many thousands of years ago, our ancestors ate primarily vegetables, fruit, nuts, roots and meat—and a wide variety of it. This diet was high in fats and protein, and low in grain- and sugar-derived carbohydrates. The average person's diet today, on the other hand, is the complete opposite, and the ave Continue reading >>

Share on facebook

Popular Questions

  1. messenger

    can the body produce its own glucose

    hi all
    i am interested to learn if the body can produce its own glucose, or does all the glucose come from what we eat.
    peter

  2. plum

    I guess,it does produce.Have u heard of stress elevating sugar levels? It is true.Stress,trauma & anxiety do elevate glucose levels whether u have eaten carb or not.

  3. Stump86

    The laws of physics dictate that we cannot make energy from nothing. But your body can create glucose from other things (fats and proteins) This is called gluconeogenesis (creating new glucose).
    So the answer to your question is yes the body can produce it's own glucose but also yes it all comes from what we eat, (we also eat fats and proteins)

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Can The Body Produce Glucose From Fat?

    Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. ...

    ketosis Apr 28, 2018
  • Can The Body Convert Fat To Glucose?

    Sandi Busch received a Bachelor of Arts in psychology, then pursued training in nursing and nutrition. She taught families to plan and prepare special diets, worked as a therapeutic support specialist, and now writes about her favorite topics nutrition, food, families and parenting for hospitals and trade magazines. Glucose keeps you energized.Photo Credit: Ridofranz/iStock/Getty Images When blood glucose gets low, your energy plummets and you m ...

    ketosis Jan 21, 2019
  • How Can The Body Produce More Insulin?

    Sugar, in the form of glucose, is your body’s primary fuel source. However, having high glucose levels in your blood is damaging to your organs and nerves. To solve this problem, your body produces a hormone called insulin to help keep blood glucose levels within a normal range. Unfortunately, it’s possible to produce too much of this necessary hormone, which increases your risk for chronic diseases. Blood Glucose Regulation Blood sugar contr ...

    insulin Jan 11, 2018
  • Can Your Body Produce Glucose?

    What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the ...

    ketosis Apr 25, 2018
  • How Can You Make Your Body Produce More Insulin?

    If you are a type 1 / type-2 diabetic whose morning starts with where shall I inject insulin today and you are one amongst many type 1 /type-2 diabetics who struggles to manage insulin levels and are frustrated of the costs and the pain of injecting insulin everyday then you must know there are methods to produce insulin in your body naturally by making great food choices, exercise regularly and taking right vitamin supplements, Lets explore !! E ...

    diabetic diet Mar 29, 2018
  • Can The Body Turn Fat Into Glucose?

    All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once ...

    ketosis Jan 21, 2019

More in ketosis