diabetestalk.net

Can The Body Produce Glucose From Fat?

Share on facebook

There has been much debate on the subject of the body"s preferred fuel source. This is my take on the topic. The Bio chemistry text book where this info came from: https://www.ncbi.nlm.nih.gov/books/NB... Instagram: https://instagram.com/ketobrainbrian

Why Fats (and Not Carbs) Are The Body's Preferred Fuel Source

Why Fats (And Not Carbs) Are The Body's Preferred Fuel Source #dmt , #healthandfitness , #lifehack , #occult , #superfoods , #synchro , #transhumanism , #yoga , anti-inflammatory , fitness , health , nutrition Insulin. Not only does it look cool...it's also the key to understanding how your body stores fat. If you keep up with the Synchro Life Design System, you'll know by now that I'm a huge advocate of eating a diet that is low-glycemic load and fuels the body primarily with high-quality, easily digested fats. Switching to this diet was hugely transformative for me, and if you look around a bit online, you'll find it's a rapidly growing movement that has produced similar results for hundreds of thousands of people. If your goals are stable vibrant energy, high cognitive performance and low body-fat - this diet produces results better than any other I have come across. Initially, it looks a little counterintuitive. Why does eating lots of fat produce high energy and low body fat? First, it's important to make a distinction between types of fat. There are a lot of undesirable types of fat out there - but even many types of fats commonly regarded as "healthy" turn out to be closer Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more
Share on facebook

Saturated fats, unsaturated fats, and trans fats Watch the next lesson: https://www.khanacademy.org/science/b... Missed the previous lesson? https://www.khanacademy.org/science/b... Biology on Khan Academy: Life is beautiful! From atoms to cells, from genes to proteins, from populations to ecosystems, biology is the study of the fascinating and intricate systems that make life possible. Dive in to learn more about the many branches of biology and why they are exciting and important. Covers topics seen in a high school or first-year college biology course. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLear

How The Body Uses Carbohydrates, Proteins, And Fats

How the Body Uses Carbohydrates, Proteins, and Fats The human body is remarkably adept at making do with whatever type of food is available. Our ability to survive on a variety of diets has been a vital adaptation for a species that evolved under conditions where food sources were scarce and unpredictable. Imagine if you had to depend on successfully hunting a woolly mammoth or stumbling upon a berry bush for sustenance! Today, calories are mostly cheap and plentifulperhaps too much so. Understanding what the basic macronutrients have to offer can help us make better choices when it comes to our own diets. From the moment a bite of food enters the mouth, each morsel of nutrition within starts to be broken down for use by the body. So begins the process of metabolism, the series of chemical reactions that transform food into components that can be used for the body's basic processes. Proteins, carbohydrates , and fats move along intersecting sets of metabolic pathways that are unique to each major nutrient. Fundamentallyif all three nutrients are abundant in the dietcarbohydrates and fats will be used primarily for energy while proteins provide the raw materials for making hormones Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

Entry for Berkeley's Navigating the Gray Engineering Video Contest. Made Possible with the Information Provided by the Following Websites: http://www.globalresearch.ca http://www.nongmoproject.org http://www.actionbioscience.org http://www.scu.edu http://www.responsibletechnology.org http://www.gmfreecymru.org http://www.ncbi.nlm.nih.gov http://www.elsevier.com http://www.sciencebasedmedicine.org http://www.randi.org http://www.monsanto.com http://www.nspe.org Songs used under a creative commons license. A Very Special Thanks to Brittney Duquette and Jodie Howard

How Our Bodies Turn Food Into Energy

All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be used later. However, our bodies need insulin in order to use or store glucose for energy. Without insulin, glucose stays in the bloodstream, keeping blood sugar levels high. Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the amount of glucose in the bloodstream. Normally beta cells check the blood's glucose level every few seconds and sense when they need to speed up or slow down the amount of insulin they're making and releasing. When someone eats something high in carbohydrates, like a piece of bread, the glucose level in the blood rises and the beta cells trigger the pancreas to release more insulin in Continue reading >>

Share on facebook

Popular Questions

  1. messenger

    can the body produce its own glucose

    hi all
    i am interested to learn if the body can produce its own glucose, or does all the glucose come from what we eat.
    peter

  2. plum

    I guess,it does produce.Have u heard of stress elevating sugar levels? It is true.Stress,trauma & anxiety do elevate glucose levels whether u have eaten carb or not.

  3. Stump86

    The laws of physics dictate that we cannot make energy from nothing. But your body can create glucose from other things (fats and proteins) This is called gluconeogenesis (creating new glucose).
    So the answer to your question is yes the body can produce it's own glucose but also yes it all comes from what we eat, (we also eat fats and proteins)

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Can Your Body Produce Glucose?

    The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possib ...

    ketosis Apr 25, 2018
  • How Can You Make Your Body Produce More Insulin?

    The word insulin comes from the Latin insula, which means "island". This is a hormone secreted by the pancreas which is involved in the metabolic process of absorption of nutrients, especially of carbohydrates (sugars). When insulin is not secreted enough for the body, it causes what is known as diabetes mellitus, when there is excess insulin in the body generates what is known as hyperinsulinism with hypoglycemia. Diabetes mellitus is a conditio ...

    diabetic diet Mar 29, 2018
  • How Can The Body Produce More Insulin?

    With so much written about diet versus exercise and exercise versus diet, it’s easy to overlook the role hormones play in our health and wellbeing, but they can make all the difference. That's why we’ve decided to take a closer look at the hormone insulin: What is it, and how does it relate to diabetes? Can we manipulate insulin to help us lose fat and live longer? As it turns out, we can—and pretty easily, too. What Is Insulin and How Does ...

    insulin Jan 11, 2018
  • Can Body Produce Too Much Insulin?

    The pancreas is an organ in the abdomen. The pancreas makes several enzymes and hormones, including the hormone insulin. Insulin's job is to reduce the level of sugar (glucose) in the blood by helping it move into cells. Most of the time when your blood sugar level drops too low, the pancreas stops making insulin until your blood sugar returns to normal. Tumors of the pancreas that produce too much insulin are called insulinomas. Insulinomas keep ...

    insulin Apr 28, 2018
  • How Does Your Body Produce Glucose Without Carbohydrates?

    As an ongoing student of the low-carb lifestyle, I have to admit I don't always understand every little detail about how and why this way of eating works so well to help people manage their obesity, diabetes, and other health-related issues. But that doesn't mean I'm just gonna throw my hands up in the air in disgust and give up trying to absorb all the information I can about livin' la vida low-carb. Instead, hopefully I can impart to you what I ...

    ketosis Apr 25, 2018
  • Can The Body Produce Glucose From Fat?

    Opinions expressed by Forbes Contributors are their own. Answer by Bart Loews , passionate exercise enthusiast, on Quora : How is fat being converted into calories at cellular level? First lets get some term clarification: A calorie is a measure of energy, specifically heat. Its a measurement of an indirect use of your biological fuels. Your body doesnt really convert things to calories, it converts them to ATP which is used as energy. Calories ...

    ketosis Apr 28, 2018

Popular Articles

More in ketosis