diabetestalk.net

Can Ketoacidosis Cause Kidney Failure

I’ll See Your Ketoacidosis And Raise You A Renal Failure

I’ll See Your Ketoacidosis And Raise You A Renal Failure

A while back I posted on a paper that appeared in The Lancet about an obese woman who came to the emergency room with gastroenteritis and was misdiagnosed as being in diabetic ketoacidosis (a life-threatening disorder). She was misdiagnosed because the pinheads covering the ER couldn’t get past the fact that she had been on a low-carb diet. At the time I posted on this travesty I noted that this Lancet paper would from here on out be waved in the face of anyone who was following or advocated a low-carb diet as proof that such a diet is dangerous and can cause diabetic ketoacidosis (DKA). Well, now we’ve got an answer. Next time someone tells you that it has been proven that low-carb diets are dangerous and can cause ketoacidosis, you can resort to poker terminology and reply that you’ll see their ketoacidosis and raise them a renal failure. A few days ago I got wind of a paper published a few years ago that can be used as a counterpoint to the above mentioned idiotic paper in The Lancet that has given low-carbers such a bad time. This paper, published in the journal Renal Failure in 1998, is, like the other paper, a case report. The short version is as follows: An obese young man arrived comatose in the emergency room. In an effort to lose weight he had been consuming a high-carbohydrate canned beverage as his sole source of nutrition for the two weeks prior. His blood sugar–at about 20 times normal–was extremely elevated and led to a diagnosis of diabetic ketoacidosis. The physicians on staff treated the patient appropriately, and he, over the next 20 hours or so, regained consciousness as his blood sugar levels and other lab parameters began to normalize. During a lab analysis 22 hours after admission the doctors found the patient to be breaking down and rel Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious problem that can occur in people with diabetes if their body starts to run out of insulin. This causes harmful substances called ketones to build up in the body, which can be life-threatening if not spotted and treated quickly. DKA mainly affects people with type 1 diabetes, but can sometimes occur in people with type 2 diabetes. If you have diabetes, it's important to be aware of the risk and know what to do if DKA occurs. Symptoms of diabetic ketoacidosis Signs of DKA include: needing to pee more than usual being sick breath that smells fruity (like pear drop sweets or nail varnish) deep or fast breathing feeling very tired or sleepy passing out DKA can also cause high blood sugar (hyperglycaemia) and a high level of ketones in your blood or urine, which you can check for using home-testing kits. Symptoms usually develop over 24 hours, but can come on faster. Check your blood sugar and ketone levels Check your blood sugar level if you have symptoms of DKA. If your blood sugar is 11mmol/L or over and you have a blood or urine ketone testing kit, check your ketone level. If you do a blood ketone test: lower than 0.6mmol/L is a normal reading 0.6 to 1.5mmol/L means you're at a slightly increased risk of DKA and should test again in a couple of hours 1.6 to 2.9mmol/L means you're at an increased risk of DKA and should contact your diabetes team or GP as soon as possible 3mmol/L or over means you have a very high risk of DKA and should get medical help immediately If you do a urine ketone test, a result of more than 2+ means there's a high chance you have DKA. When to get medical help Go to your nearest accident and emergency (A&E) department straight away if you think you have DKA, especially if you have a high level of ketones in Continue reading >>

Management Of Hyperglycemia In Diabetic Kidney Disease

Management Of Hyperglycemia In Diabetic Kidney Disease

Role of A1C in DKD A1C has limitations related to its precision and interpretation in the CKD population (4), with erythrocyte turnover being a major cause of A1C imprecision in this population. Red blood cell survival times become shorter as eGFR falls, resulting in a reduction in measured A1C. Treatment with erythrocyte-stimulating agents lowers A1C further, perhaps because of changes in hemoglobin concentrations (5,6). Observational data support the notion that higher A1C levels in nondialysis diabetes patients with CKD stages 3–5 (eGFR levels <60 mL/min/1.73 m2) are associated with worse outcomes, including progression of kidney disease (7). However, these patients are at higher risk for hypoglycemic events (8). Factors that may contribute to this increased risk can include slowed elimination of hypoglycemic agents, alcohol intake, chronic malnutrition, acute caloric deprivation, and decreased renal gluconeogenesis as kidney function declines (8–10). In the ACCORD (Action to Control Cardiovascular Risk in Diabetes) study, when compared with patients with normal renal function, those with baseline serum creatinine of 1.3–1.5 mg/dL had a 66% increased risk of severe hypoglycemia (11). A U-shaped relationship between A1C and mortality has been demonstrated, suggesting that hypoglycemia may be one reason for higher mortality in those with A1C levels <6.5% (7,12,13). Although A1C levels between ∼7 and 8% appear to be associated with the highest survival rates in retrospective studies of DKD patients, the previously highlighted limitations of A1C in the setting of DKD makes A1C goal-setting difficult (8). Despite the inherent limitations of A1C measurement, however, A1C remains a key monitoring parameter in the glycemic management of people with DKD (12). Importan Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Acute Kidney Injury As A Severe Complication Of Diabetic Ketoacidosis

Acute Kidney Injury As A Severe Complication Of Diabetic Ketoacidosis

Background: Diabetic ketoacidosis (DKA) in children and young adults carries significant morbidity and mortality relating to complications such as cerebral oedema. Acute kidney injury (AKI) is a rare but potentially fatal complication of DKA. We present three cases of DKA complicated by AKI. Case 1: A 9-year-old girl presented with severe DKA at diagnosis. She was treated with intravenous fluids and insulin as per protocol. She had oliguria and haematuria 36 h after admission. She was hypertensive with evidence of enlarged kidneys on ultrasound (USS). She was transferred to the renal unit where she needed two cycles of hemodialysis before making full recovery. Case 2: A 14-year-old girl presented with severe DKA and altered consciousness at diagnosis. She developed oliguria 24 h after starting treatment for DKA. USS of abdomen showed enlarged kidneys. Her renal function improved with haemofiltration and recovered fully by 1 week. Case 3: A 17-year-old girl with poorly controlled type 1 diabetes presented with severe DKA. She showed evidence of AKI with very high plasma creatinine, oliguria and low plasma phosphate. She was managed conservatively with individualised fluid plan and phosphate supplementation with recovery in 7 days. Conclusion: Patients with severe DKA can develop AKI due to a number of possible causes, hypovolaemia being the most likely primary cause. Appropriate management of hypovolemia and electrolyte disturbance in these patients can be very challenging. These cases highlight the importance of early recognition of AKI (rising plasma creatinine, oliguria, and haematuria) and discussion with paediatric nephrologist to formulate individualised fluid therapy in order to prevent deterioration in renal function. It is uncertain if recent modification in flu Continue reading >>

Management Of A Dka Patient With Severe Metabolic And Ketoacidosis With Chronic Renal Insufficiency Brian Albany Otterbein University, Boomer.albany@otterbein.edu

Management Of A Dka Patient With Severe Metabolic And Ketoacidosis With Chronic Renal Insufficiency Brian Albany Otterbein University, [email protected]

Otterbein University Digital Commons @ Otterbein MSN Student Scholarship Student Research & Creative Work Fall 2014 Follow this and additional works at: Part of the Endocrine System Diseases Commons, Medical Pathology Commons, and the Nursing Commons This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in MSN Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact [email protected] Recommended Citation Albany, Brian, "Management of a DKA patient with severe metabolic and ketoacidosis with chronic renal insufficiency" (2014). MSN Student Scholarship. Paper 6. Implications for nursing care Management of a DKA patient with severe metabolic and ketoacidosis with chronic renal insufficiency Brian Albany BSN, CCRN Introduction Case Study References Underlying Pathophysiology Diabetic ketoacidosis (DKA) serves as one the leading causes of mortality in diabetic patients [14]. The mortality has decreased over the past several decades due to the rapid recognition of the disease state and the improvement of management of DKA [14]. Despite a decline in mortality rates over the past twenty years from 7.96% to 0.67%, errors in management of the disease state are associated with significant morbidity and mortality [2]. Utilization of DKA protocols in the acute care setting have allowed congruency in care and delivery of effective lifesaving treatment. Despite advances in standardized DKA protocols, there still remains a gap in how to manage specific patient populations with end stage renal disease. Understanding the pathophysiology behind these patient populations will yield better outcomes with the ultimate Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetes With Ketone Bodies In Dogs

Diabetes With Ketone Bodies In Dogs

Studies show that female dogs (particularly non-spayed) are more prone to DKA, as are older canines. Diabetic ketoacidosis is best classified through the presence of ketones that exist in the liver, which are directly correlated to the lack of insulin being produced in the body. This is a very serious complication, requiring immediate veterinary intervention. Although a number of dogs can be affected mildly, the majority are very ill. Some dogs will not recover despite treatment, and concurrent disease has been documented in 70% of canines diagnosed with DKA. Diabetes with ketone bodies is also described in veterinary terms as diabetic ketoacidosis or DKA. It is a severe complication of diabetes mellitus. Excess ketone bodies result in acidosis and electrolyte abnormalities, which can lead to a crisis situation for your dog. If left in an untreated state, this condition can and will be fatal. Some dogs who are suffering from diabetic ketoacidosis may present as systemically well. Others will show severe illness. Symptoms may be seen as listed below: Change in appetite (either increase or decrease) Increased thirst Frequent urination Vomiting Abdominal pain Mental dullness Coughing Fatigue or weakness Weight loss Sometimes sweet smelling breath is evident Slow, deep respiration. There may also be other symptoms present that accompany diseases that can trigger DKA, such as hypothyroidism or Cushing’s disease. While some dogs may live fairly normal lives with this condition before it is diagnosed, most canines who become sick will do so within a week of the start of the illness. There are four influences that can bring on DKA: Fasting Insulin deficiency as a result of unknown and untreated diabetes, or insulin deficiency due to an underlying disease that in turn exacerba Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

What Are The Causes Of Kidney Failures?

What Are The Causes Of Kidney Failures?

I had been suffering from kidney issues for several years… It also influenced my glucose levels and in general I felt really awful. I took a large daily dose of drugs in order to create my kidneys work correctly but they kept failing… Till a Fantastic friend recommended me a simple and low cost online tutorial, which certainly altered my life - click here to check it out Basically it’s a step-by-step treatment tutorial which helps improve your kidneys naturally, without the use of unnatural man-made pharmaceutical medications. Better yet, when you observe the program you are going to be able to postpone dialysis by years or even years … or perhaps even prevent dialysis all together! Just what is kidney failing? Your kidneys are a set of organs situated toward your lower back. Your kidneys send out contaminants to your bladder. Kidney failing occurs when your kidneys shed the capability to filter waste from your blood adequately. Several elements could disrupt your kidney health and wellness and feature, such as: toxic exposure to toxic wastes or specific medications specific severe and persistent conditions extreme dehydration kidney trauma Your body becomes overloaded with toxic substances if your kidneys can not do their regular task. If it’s left untreated, this can lead to kidney failing and also even be lethal. SIGNS AND SYMPTOMS Just what are the symptoms of kidney failure? Lots of different symptoms could take place throughout kidney failing. Generally someone with kidney failure will have a couple of symptoms of the disease, though often none are present. Possible signs include: a lowered quantity of urine swelling of your legs, ankles, as well as feet from retention of fluids brought on by the failure of your kidneys to get rid of water waste unexplai Continue reading >>

Diabetes Medication Invokana Caused Ketoacidosis, Kidney Failure, Patient Claims

Diabetes Medication Invokana Caused Ketoacidosis, Kidney Failure, Patient Claims

Diabetes medication Invokana is at the center of a lawsuit alleging the drug can lead to ketoacidosis, kidney failure, stroke and heart attack. Invokana from Johnson & Johnson is used to maintain lower blood sugar levels in adults with type-2 diabetes. It works by making the kidneys remove sugar from the body through the urine rather than have it be reabsorbed into the blood. As a result of this action, patients can develop dehydration, which taxes the kidneys. Plaintiff Frederick S. says he started taking diabetes medication Invokana in February 2015. By mid-July 2015, Frederick “suffered from diabetic ketoacidosis, acute renal failure, acute kidney failure and urosepsis,” he claims. The latter is a severe bacterial infection of the blood that can injure the kidneys. The FDA approved diabetes medication Invokana in 2014 to help maintain blood sugar levels in type-2 diabetics. It was the first in a new class of medications called SGLT2 inhibitors that eliminate excess glucose (sugar) by sending it through the kidneys and out the urine instead of allowing the glucose back into the bloodstream. In December 2015, the FDA ordered all manufacturers of SGLT2 inhibitors to include warning labels about the risk of ketoacidosis. At that time, the drugs were also made to add warnings regarding an increased risk of urinary tract infections as well. In Frederick’s Invokana lawsuit, Johnson & Johnson is accused of “through their marketing materials, misrepresented and exaggerated the effectiveness of Invokana, both as to its ability to lower glucose, and its benefit for non-surrogate measures of health, such as reducing adverse cardiovascular outcomes.” The diabetes medication Invokana lawsuit contends, “Because Invokana prevents patients from using a significant amount Continue reading >>

Diabetes And Kidney Failure (stage 5)

Diabetes And Kidney Failure (stage 5)

What is diabetes? Diabetes happens when your body does not make enough insulin or cannot use insulin properly. Insulin is a hormone. It controls how much sugar is in your blood. A high level of sugar in your blood can cause damage to the very small blood vessels in your kidneys. Over time, this can lead to kidney disease and kidney failure. What is kidney failure? Healthy kidneys do many important jobs. They filter your blood, keep fluids in balance, and make hormones that help your body control blood pressure, have healthy bones, and make red blood cells. If you have kidney failure, it means your kidneys have stopped working well enough to do these important jobs and keep you alive. As a result: Harmful wastes build up in your body Your blood pressure may rise Your body may hold too much fluid Your body cannot make enough red blood cells When this happens, you need treatment to replace the work of your failed kidneys. There is no cure for kidney failure. A person with kidney failure needs treatment to live. Three types of treatment can be used if your kidneys have failed: Hemodialysis Peritoneal dialysis Kidney transplantation Your healthcare team will discuss these different treatments with you and answer all your questions. They will help you choose the best treatment for you, based on your general health, lifestyle, and treatment preference. Your decision does not need to be final. Many people have used each one of these treatments at different times in their lifetime. If I have kidney failure and diabetes, what will my treatment involve? A kidney doctor (called a nephrologist) will plan your treatment with you, your family, and your dietitian. In addition to dialysis or a transplant, you will need to: Keep your blood sugar under control. This is usually done with d Continue reading >>

Medications And Kidney Complications, Symptoms Of Diabetic Ketoacidosis

Medications And Kidney Complications, Symptoms Of Diabetic Ketoacidosis

Your kidneys are two organs located on either side of your backbone just above your waist. They remove waste and excess fluid from the blood, maintain the balance of salt and minerals in the blood, and help regulate blood pressure, among other functions. 1 If damaged, they can cause you to have health issues. Acute Renal Injury A sudden loss of kidney function can be caused by: lack of blood flow to the kidneys, direct damage to the kidneys, or blockage of urine from the kidneys. Common causes of these losses of function may include: traumatic injury, dehydration, severe systemic infection (sepsis), damage from drugs/toxins or pregnancy complications. 2 Chronic Kidney Disease When kidney damage and decreased function lasts longer than three months, it is called chronic kidney disease (CKD). CKD can be dangerous, as you may not have any symptoms until after the kidney damage, which may or may not be able to be repaired, has occurred. High blood pressure and diabetes (types 1 and 2) are the most common causes of CKD. 3 Causes of Chronic Kidney Disease There are also other causes of CKD. These can include: Immune system conditions (e.g., lupus) Long-term viral illnesses (HIV/AIDS, hepatitis B, hepatitis C) Pyelonephritis (urinary tract infections within the kidneys) Inflammation in the kidney’s filters (glomeruli) Polycystic kidney disease (fluid-filled cysts form in the kidneys) Congenital defects (malformations present at birth) Toxins, chemicals Type 2 Diabetes Symptoms People with uncontrolled type 2 diabetes have high levels of sugar (glucose) building up and circulating in the blood. This high blood sugar can cause heart disease, stroke, kidney disease, blindness and nerve damage, among other complications. 5 You may have no type 2 diabetes symptoms, or symptoms ma Continue reading >>

Incidence And Characteristics Of Acute Kidney Injury In Severe Diabetic Ketoacidosis

Incidence And Characteristics Of Acute Kidney Injury In Severe Diabetic Ketoacidosis

Abstract Acute kidney injury is a classical complication of diabetic ketoacidosis. However, to the best of our knowledge, no study has reported the incidence and characteristics of acute kidney injury since the consensus definition was issued. Retrospective study of all cases of severe diabetic ketoacidosis hospitalised consecutively in a medical surgical tertiary ICU during 10 years. Patients were dichotomised in with AKI and without AKI on admission according to the RIFLE classification. Clinical and biological parameters were compared in these populations. Risk factors of presenting AKI on admission were searched for. Results Ninety-four patients were included in the study. According to the RIFLE criteria, 47 patients (50%) presented acute kidney injury on admission; most of them were in the risk class (51%). At 12 and 24 hours, the percentage of AKI patients decreased to 26% and 27% respectively. During the first 24 hours, 3 patients needed renal replacement therapy. Acute renal failure on admission was associated with a more advanced age, SAPS 2 and more severe biological impairments. Treatments were not different between groups except for insulin infusion. Logistic regression found 3 risk factors of presenting AKI on admission: age (odds ratio 1.060 [1.020–1.100], p<0.01), blood glucose (odds ratio 1.101 [1.039–1.166], p<0.01) and serum protein (odds ratio 0.928 [0.865–0.997], p = 0.04). Acute kidney injury is frequently associated with severe diabetic ketoacidosis on admission in ICU. Most of the time, this AKI is transient and characterised by a volume-responsiveness to fluid infusion used in DKA treatment. Age, blood glucose and serum protein are associated to the occurrence of AKI on ICU admission. Figures Citation: Orban J-C, Maizière E-M, Ghaddab A, V Continue reading >>

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic ketoacidosis definition and facts Diabetic ketoacidosis is a life-threatening complication of type 1 diabetes (though rare, it can occur in people with type 2 diabetes) that occurs when the body produces high levels of ketones due to lack of insulin. Diabetic ketoacidosis occurs when the body cannot produce enough insulin. The signs and symptoms of diabetic ketoacidosis include Risk factors for diabetic ketoacidosis are type 1 diabetes, and missing insulin doses frequently, or being exposed to a stressor requiring higher insulin doses (infection, etc). Diabetic ketoacidosis is diagnosed by an elevated blood sugar (glucose) level, elevated blood ketones and acidity of the blood (acidosis). The treatment for diabetic ketoacidosis is insulin, fluids and electrolyte therapy. Diabetic ketoacidosis can be prevented by taking insulin as prescribed and monitoring glucose and ketone levels. The prognosis for a person with diabetic ketoacidosis depends on the severity of the disease and the other underlying medical conditions. Diabetic ketoacidosis (DKA) is a severe and life-threatening complication of diabetes. Diabetic ketoacidosis occurs when the cells in our body do not receive the sugar (glucose) they need for energy. This happens while there is plenty of glucose in the bloodstream, but not enough insulin to help convert glucose for use in the cells. The body recognizes this and starts breaking down muscle and fat for energy. This breakdown produces ketones (also called fatty acids), which cause an imbalance in our electrolyte system leading to the ketoacidosis (a metabolic acidosis). The sugar that cannot be used because of the lack of insulin stays in the bloodstream (rather than going into the cell and provide energy). The kidneys filter some of the glucose (suga Continue reading >>

More in ketosis