diabetestalk.net

Can Glycerol Be Converted To Glucose

Pyruvate The Conversion Of Glycerol To Pyruvate Is Easy Because They Are Both

Pyruvate The Conversion Of Glycerol To Pyruvate Is Easy Because They Are Both

Pyruvate The conversion of glycerol to pyruvate is easy because they are both three-carbon compounds.TriglycerideGlycerolFatty acids This preview has intentionally blurred sections. Sign up to view the full version. Breaking Down Nutrients for Energy Glycerol and Fatty Acids Fatty acids-to-Acetyl CoAFatty acid oxidation2-carbon units at a time then join with CoAHydrogens and electrons carried to electron transport chainFatty acids cannot be used to synthesize glucose. Glucose must be available to provide energy to the red blood cells, brain, and nervous system.TriglycerideGlycerolFatty acids Breaking Down Nutrients for EnergyreversibleNot reversibleFatty acids cannotbe used to synthesize glucose. Glycerol canbe used to synthesize glucose. This preview has intentionally blurred sections. Sign up to view the full version. Breaking Down Nutrients for Energy Glycerol and Fatty Acids Breaking Down Nutrients for Energy Glycerol and Fatty Acids Fatty Acid Oxidation This preview has intentionally blurred sections. Sign up to view the full version. Breaking Down Nutrients for Energyreversible Breaking Down Nutrients for Energy Amino AcidsAmino acids can be converted energy.Amino acids are a fairly good source of glucose when carbohydrate is notavailable.Deamination of amino acids Amino acids-to-energySeveral entry points in energy pathwayConverted to pyruvate (glucogenic)Converted to acetyl CoA (ketogenic)Enter TCA cycle directly (glucogenic)Amino acids-to-glucoseDeamination This preview has intentionally blurred sections. Sign up to view the full version. Breaking Down Nutrients for Energy Amino AcidsGlucose Glucose and fatty acids are primarily used for energy, amino acids to a lesser extent.Glucose is made from all carbohydrates, most amino acids, and the glycerol portion of Continue reading >>

Glyceroneogenesis And The Source Of Glycerol For Hepatic Triacylglycerol Synthesis In Humans*

Glyceroneogenesis And The Source Of Glycerol For Hepatic Triacylglycerol Synthesis In Humans*

[2H]water, 99.9%2H, and [1,2,3-13C3]glycerol, 99% 13C, were obtained from Isotech, Inc. (Miamisburg, OH). The respective contributions of plasma glycerol and pyruvate were quantified in two separate groups of nonpregnant and pregnant women. Written informed consent was obtained from each woman and her spouse (when available) after fully explaining the procedure. The protocol was approved by the Institutional Review Board of the University Hospitals of Cleveland. Glycerol Incorporation in Triacylglycerol [1,2,3-13C]Glycerol (over 99%13C) was infused in five normal nonpregnant women after an overnight fast. They were physically healthy and had a negative history of diabetes or other metabolic disorders in their family. The tracer glycerol was dissolved in normal saline, sterilized by Millipore filtration, and tested for pyrogenicity and sterility. All subjects reported to the Clinical Research Center at University of Hospitals of Cleveland following a 12-h fast. The tracer was infused at a constant rate of 0.03 mg/kg of body weight/min for a period of 5 h, following a priming dose of 0.5 mg/kg. Arterialized blood samples were obtained in heparinized syringes from the opposite arm at 30-min intervals starting at 1 h. Blood samples were centrifuged immediately, and the plasma samples were stored at 70 C until analysis. Pyruvate Incorporation into Triacylglycerol The contribution of pyruvate to glycerol in triacylglycerol was evaluated using the total body water labeling method described for determining the rate of gluconeogenesis in vivo ( 12 , 13 ). The volunteers had been studied previously, and the details of the experimental design and the data on glucose turnover and gluconeogenesis have been reported previously ( 12 ). Plasma samples for the quantification of glycero Continue reading >>

Can Fats Be Turned Into Glycogen For Muscle?

Can Fats Be Turned Into Glycogen For Muscle?

The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

Gluconeogenesis

Gluconeogenesis

Not to be confused with Glycogenesis or Glyceroneogenesis. Simplified Gluconeogenesis Pathway Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis)[1] and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells.[4] In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs Continue reading >>

Glycogenesis, Glycogenolysis,

Glycogenesis, Glycogenolysis,

Biosynthesis of Glycogen: The goal of glycolysis, glycogenolysis, and the citric acid cycle is to conserve energy as ATP from the catabolism of carbohydrates. If the cells have sufficient supplies of ATP, then these pathways and cycles are inhibited. Under these conditions of excess ATP, the liver will attempt to convert a variety of excess molecules into glucose and/or glycogen. Glycogenesis: Glycogenesis is the formation of glycogen from glucose. Glycogen is synthesized depending on the demand for glucose and ATP (energy). If both are present in relatively high amounts, then the excess of insulin promotes the glucose conversion into glycogen for storage in liver and muscle cells. In the synthesis of glycogen, one ATP is required per glucose incorporated into the polymeric branched structure of glycogen. actually, glucose-6-phosphate is the cross-roads compound. Glucose-6-phosphate is synthesized directly from glucose or as the end product of gluconeogenesis. Link to: Interactive Glycogenesis (move cursor over arrows) Jim Hardy, Professor of Chemistry, The University of Akron. Glycogenolysis: In glycogenolysis, glycogen stored in the liver and muscles, is converted first to glucose-1- phosphate and then into glucose-6-phosphate. Two hormones which control glycogenolysis are a peptide, glucagon from the pancreas and epinephrine from the adrenal glands. Glucagon is released from the pancreas in response to low blood glucose and epinephrine is released in response to a threat or stress. Both hormones act upon enzymes to stimulate glycogen phosphorylase to begin glycogenolysis and inhibit glycogen synthetase (to stop glycogenesis). Glycogen is a highly branched polymeric structure containing glucose as the basic monomer. First individual glucose molecules are hydrolyzed fr Continue reading >>

Does Fat Convert To Glucose In The Body?

Does Fat Convert To Glucose In The Body?

Your body is an amazing machine that is able to extract energy from just about anything you eat. While glucose is your body's preferred energy source, you can't convert fat into glucose for energy; instead, fatty acids or ketones are used to supply your body with energy from fat. Video of the Day Fat is a concentrated source of energy, and it generally supplies about half the energy you burn daily. During digestion and metabolism, the fat in the food you eat is broken down into fatty acids and glycerol, which are emulsified and absorbed into your blood stream. While some tissues -- including your muscles -- can use fatty acids for energy, your brain can't convert fatty acids to fuel. If you eat more fat than your body needs, the extra is stored in fat cells for later use. Fat has more than twice as many calories per gram as carbs and protein, which makes it an efficient form of stored energy. It would take more than 20 pounds of glycogen -- a type of carbohydrate used for fuel -- to store the same amount of energy in just 10 pounds of fat. Your Body Makes Glucose From Carbs Almost all the glucose in your body originated from carbohydrates, which come from the fruit, vegetables, grains and milk in your diet. When you eat these carb-containing foods, your digestive system breaks them down into glucose, which is then used for energy by your cells. Any excess glucose is converted into glycogen, then stored in your muscles and liver for later use. Once you can't store any more glucose or glycogen, your body stores any leftover carbs as fat. Glucose is your brain's preferred source of energy. However, when glucose is in short supply, your brain can use ketones -- which are derived from fat -- for fuel. Since your brain accounts for approximately one-fifth of your daily calori Continue reading >>

Chapter 7

Chapter 7

Metabolism: Transformations and Interactions Chemical Reactions in the Body Plants use the sun’s energy to make carbohydrate from carbon dioxide and water. This is called photosynthesis. Humans and animals eat the plants and use the carbohydrate as fuel for their bodies. During digestion, the energy-yielding nutrients are broken down to monosaccharides, fatty acids, glycerol, and amino acids. After absorption, enzymes and coenzymes can build more complex compounds. In metabolism they are broken down further into energy (ATP), water and carbon dioxide. Chemical Reactions in the Body Metabolic reactions take place inside of cells, especially liver cells. Anabolism is the building up of body compounds and requires energy. Catabolism is the breakdown of body compounds and releases energy. Chemical Reactions in the Body Enzymes and coenzymes are helpers in reactions. Enzymes are protein catalysts that cause chemical reactions. Coenzymes are organic molecules that function as enzyme helpers. Cofactors are organic or inorganic substances that facilitate enzyme action. Breaking Down Nutrients for Energy The breakdown of glucose to energy starts with glycolysis to pyruvate. Pyruvate may be converted to lactic acid anaerobically (without oxygen) and acetyl CoA aerobically (with oxygen). Eventually, all energy-yielding nutrients enter the TCA cycle or tricarboxylic acid cycle (or Kreb’s cycle) and the electron transport chain. Breaking Down Nutrients for Energy Glucose Glucose-to-pyruvate is called glycolysis or glucose splitting. Pyruvate’s Options Anaerobic – lactic acid Aerobic – acetyl CoA Pyruvate-to-Lactate Oxygen is not available or cells lack sufficient mitochondria Lactate is formed when hydrogen is added to pyruvate. Liver cells recycle Continue reading >>

Gluconeogenesis Definition

Gluconeogenesis Definition

The literal meaning of Gluconeogenesis is GLUCO – glucose; NEO – new; GENESIS – creation. Thus Gluconeogenesis is a biochemical term that describes the synthesis of glucose or glycogen from substances which are not carbohydrates. Gluconeogenesis is the procedure that generates the energy giving fuel ’ glucose’ from substances other than carbohydrates, which are stored in the body , when the carbohydrate substrates are not sufficiently available as in starvation or when they are of great demand as in intense physical exertion. [1,2,3,4] Gluconeogenesis Pathway Basically Gluconeogenesis is the reversal of Glycolysis which is the process of breaking down of glucose to produce energy. [1]Glycolysis proceeds to another energy cycle called Citric acid cycle by forming a substance called pyruvate. So, Gluconeogenesis is just the reversal of Glycolysis – starting with pyruvate. The substrates get converted to pyruvate or other intermediates of the Citric acid cycle by various chemical reactions from which Gluconeogenesis begins. Which way does the process go if all the set of enzymes are same for both glucose synthesis and breakdown? This conflict is overcome by the 3 key steps in Gluconeogenesis which cannot occur with enzymes of Glycolysis. So these 3 steps are circumvented by another set of enzymes to form glucose at the end. Substrates of Gluconeogenesis Glucogenic amino acids like alanine and glutamine Lactate which is produced as a byproduct of glycolysis in muscles, red blood cells etc Glycerol, which is a part of triacylglecerol molecule in adipose tissue Fatty acid Citric acid cycle intermediates through oxaloacetic acid Glucogenic amino acids Glucogenic amino acid undergoes transamination which causes change in the carbon skeleton and directly gets convert Continue reading >>

Glucose-to-glycerol Conversion In Long-lived Yeast Provides Anti-aging Effects

Glucose-to-glycerol Conversion In Long-lived Yeast Provides Anti-aging Effects

Cell biologists have found a more filling substitute for caloric restriction in extending the life span of simple organisms. Researchers show that yeast cells maintained on a glycerol diet live twice as long as normal -- as long as yeast cells on a severe caloric-restriction diet. They are also more resistant to cell damage. Cell biologists have found a more filling substitute for caloric restriction in extending the life span of simple organisms. In a study published May 8 in the open-access journal PLoS Genetics, researchers from the University of Southern California Andrus Gerontology Center show that yeast cells maintained on a glycerol diet live twice as long as normal -- as long as yeast cells on a severe caloric-restriction diet. They are also more resistant to cell damage. Many studies have shown that caloric restriction can extend the life span of a variety of laboratory animals. Caloric restriction is also known to cause major improvements in a number of markers for cardiovascular diseases in humans. This study is the first to propose that "dietary substitution" can replace "dietary restriction" in a living species. "If you add glycerol, or restrict caloric intake, you obtain the same effect," said senior author Valter Longo. "It's as good as calorie restriction, yet cells can take it up and utilize it to generate energy or for the synthesis of cellular components." Longo and colleagues Min Wei and Paola Fabrizio introduced a glycerol diet after discovering that genetically engineered long-lived yeast cells that survive up to 5-fold longer than normal have increased levels of the genes that produce glycerol. In fact, they convert virtually all the glucose and ethanol into glycerol. Notably, these cells have a reduced activity in the TOR1/SCH9 pathway, which i Continue reading >>

Principles Of Biochemistry/gluconeogenesis And Glycogenesis

Principles Of Biochemistry/gluconeogenesis And Glycogenesis

Gluconeogenesis (abbreviated GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. It is one of the two main mechanisms humans and many other animals use to keep blood glucose levels from dropping too low (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis). Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In animals, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of kidneys. This process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise and is highly endergonic. For example, the pathway leading from phosphoenolpyruvate to glucose-6-phosphate requires 6 molecules of ATP. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type II diabetes, such as metformin, which inhibits glucose formation and stimulates glucose uptake by cells. Lactate is transported back to the liver where it is converted into pyruvate by the Cori cycle using the enzyme lactate dehydrogenase. Pyruvate, the first designated substrate of the gluconeogenic pathway, can then be used to generate glucose. All citric acid cycle intermediates, through conversion to oxaloacetate, amino acids other than lysine or leucine, and glycerol can also function as substrates for gluconeogenesis.Transamination or deamination of amino acids facilitates entering of their carbon skeleton into the cycle directly (as pyruvate or oxaloacetate), or indirectly via the citric acid cycle. Whether fatty acids can be converted into glucose in animals has been a longst Continue reading >>

Lipid Metabolism

Lipid Metabolism

on on Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors ([link]). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids. Lipid metabolism begins in the intestine where ingested triglycerides are broken down into smaller chain fatty acids and subsequently into monoglyceride molecules (see [link]b) by pancreatic lipases, enzymes that break down fats after they are emulsified by bile salts. When food reaches the small intestine in the form of chyme, a digestive hormone called cholecystokinin (CCK) is released by intestinal cells in the intestinal mucosa. CCK stimulates the release of pancreatic lipase from the pancreas and stimulates the contraction of the gallbladder to release stored bile salts into the intestine. CCK also travels to the brain, where it can act as a hunger suppressant. Together, the pancreatic lipases and bile salts break down triglycerides into free fatty acids. These fatty acids can be transported across the intestinal membrane. However, once they cross the membrane, they are recombined to again form triglyceride molecules. Within the intestinal cells, these triglycerides are packaged along with cholesterol molecules in phospholipid vesicles called chylomicrons ([link]). The chylomicrons enable fats and cholesterol to move within the aqueous environment of your lymphatic and circulatory systems. Chylomicrons leave the enterocytes by exocytosis and enter the lymphatic system via lacteals in the villi of the intestine. From the lymphatic system, the chylo Continue reading >>

Glucogenic Amino Acids

Glucogenic Amino Acids

DOUGLAS C. HEIMBURGER MD, in Handbook of Clinical Nutrition (Fourth Edition) , 2006 The major aim of protein catabolism during a state of starvation is to provide the glucogenic amino acids (especially alanine and glutamine) that serve as substrates for endogenous glucose production (gluconeogenesis) in the liver. In the hypometabolic/starved state, protein breakdown for gluconeogenesis is minimized, especially as ketones become the substrate preferred by certain tissues. In the hypermetabolic/stress state, gluconeogenesis increases dramatically and in proportion to the degree of the insult to increase the supply of glucose (the major fuel of reparation). Glucose is the only fuel that can be utilized by hypoxic tissues (anaerobic glycolysis), by phagocytosing (bacteria-killing) white cells, and by young fibroblasts. Infusions of glucose partially offset a negative energy balance but do not significantly suppress the high rates of gluconeogenesis in the catabolic patient. Hence, adequate supplies of protein are needed to replace the amino acids utilized for this metabolic response. In summary, the two physiologic states represent different responses to starvation. The hypometabolic patient, who conserves body mass by reducing the metabolic rate and using fat as the primary fuel (rather than glucose and its precursor amino acids), is adapted to starvation. The hypermetabolic patient also uses fat as a fuel but rapidly breaks down body protein to produce glucose, the fuel of reparation, thereby causing loss of muscle and organ tissue and endangering vital body functions. Joerg Klepper*, in Handbook of Clinical Neurology , 2013 Gluconeogenesis, predominantly in the liver, generates glucose from noncarbohydrate substrates such as lactate, glycerol, and glucogenic amino acid Continue reading >>

Glucose To Glycerol Conversion In Long-lived Yeast Provides Anti-aging Effects

Glucose To Glycerol Conversion In Long-lived Yeast Provides Anti-aging Effects

Glucose to glycerol conversion in long-lived yeast provides anti-aging effects Cell biologists have found a more filling substitute for caloric restriction in extending the life span of simple organisms. In a study published May 8 in the open-access journal PLoS Genetics, researchers from the University of Southern California Andrus Gerontology Center show that yeast cells maintained on a glycerol diet live twice as long as normal -- as long as yeast cells on a severe caloric-restriction diet. They are also more resistant to cell damage. Many studies have shown that caloric restriction can extend the life span of a variety of laboratory animals. Caloric restriction is also known to cause major improvements in a number of markers for cardiovascular diseases in humans. This study is the first to propose that "dietary substitution" can replace "dietary restriction" in a living species. "If you add glycerol, or restrict caloric intake, you obtain the same effect," said senior author Valter Longo. "It's as good as calorie restriction, yet cells can take it up and utilize it to generate energy or for the synthesis of cellular components." Longo and colleagues Min Wei and Paola Fabrizio introduced a glycerol diet after discovering that genetically engineered long-lived yeast cells that survive up to 5-fold longer than normal have increased levels of the genes that produce glycerol. In fact, they convert virtually all the glucose and ethanol into glycerol. Notably, these cells have a reduced activity in the TOR1/SCH9 pathway, which is also believed to extend life span in organisms ranging from worms to mice. When the researchers blocked the genes that produce glycerol, the cells lost most of their life span advantage. However, Longo and colleagues believe that the "glucose to Continue reading >>

Why Can't Fat Produce Glucose?

Why Can't Fat Produce Glucose?

Tousief Irshad Ahmed Sirwal Author has 77 answers and 106.2k answer views Acetyl CoA is NOT a substrate for gluconeogenesis in animals 1. Pyruvate dehydrogenase reaction is irreversible. So, acetyl CoA cannot be converted back to pyruvate. 2. 2C Acetyl CoA enters the TCA cycle by condensing with 4C oxaloacetate. 2 molecules of CO2 are released & the oxaloacetate is regenerated. There is no NET production of oxaloacetate. Animals cannot convert fat into glucose with minimal exceptions 1. Propionyl CoA derived from odd chain fatty acids are converted to Succinyl CoA Glucogenic 2. Glycerol derived from triglycerides are glucogenic. Answered Mar 26, 2017 Author has 942 answers and 259.1k answer views Yijia Xiong pointed out that the glycerol portion of triglycerides (fats) can indeed be converted to glucose. It is not so energy-inefficient that it is avoided by our bodies. If nutritionally, we are in a gluconeogenesis mode (building up glucose stores rather than consuming them), glycerol would be a perfectly acceptable precursor. However, I think the original question had more to do with the vast bulk of the triglycerides that are not glycerol, but are fatty acids. And it is true that we cant produce glucose from fatty acids. The reason is that the catabolic reactions of fatty acids break off two carbon atoms at a time as Acetyl-CoA. But our metabolic suite of pathways has no way to convert a two-carbon fragment to glucose. The end product of glycolysis is pyruvate, a three-carbon compound. Pyruvate can be back-synthesized into glucose. But the committing reaction for the Krebs cycle is the pyruvate dehydrogenase step, forming acetyl-CoA. That reaction is not reversible. Once pyruvate loses a carbon atom, it cant go back. The three main macronutrients are carbohydrates, pr Continue reading >>

Fat To Glycerol To Glucose

Fat To Glycerol To Glucose

Fat to Glycerol to Glucose , 08-26-2009 11:18 PM ! ! ! I have been pursuing a low card woe for 8 months and have maintained the same weight basically since just after the first 2 weeks. Maintain carbs at 20 grams per day. Getting desperate. Got the book The metabolism Miracle by Diane Kress. She says basically that you body will use dietary fat for energy before it will use it's own fat stores. I'm confused. So I have done some reading online. Learning that dietary fat is turned into glycerol and then turned into glucose. So this tells me that dietary fat should be carefully controlled or at the very least you won't lose weight. I know there are some really smart people on this discussion board and I would really appreciate any information you can share. RE: Fat to Glycerol to Glucose , 08-27-2009 10:23 AM I'm confused. So I have done some reading online. Learning that dietary fat is turned into glycerol and then turned into glucose. So this tells me that dietary fat should be carefully controlled or at the very least you won't lose weight. I know there are some really smart people on this discussion board and I would really appreciate any information you can share. Your body's main energy "currency" is glucose. Even if you never ingested a carb, your body makes its own glucose, and if your BG gets much below 70 you'll feel the symptoms of low BG (shaky, weak, etc.) Fats (ingested and stored) are triglycerides. Glycerol is the small backbone connecting 3 fatty acids. Our bodies use the fatty acids for energy by oxidizing them (serially lopping off carbon fragments to form acyl CoA). For every gram of fat, the glycerol is a teeeeeeeeeny part -- kind of like the an artificial sweetener amount of grams if that makes any sense. I would not worry at all about regulating fat Continue reading >>

More in ketosis