diabetestalk.net

Can Fatty Acids Be Converted To Glucose?

Share on facebook

Video by Ulf Smith, MD, PhD, Professor of Internal Medicine, The Lundberg Laboratory for Diabetes Research, Center of Excellence for Cardiovascular and Metabolic Research, Sahlgrenska Academy, Gteborg University, Gteborg, Sweden Produced by the International Chair on Cardiometabolic Risk

Insulin Lowers Blood Glucose By Increasing Glucose Uptake In Muscle And Adipose Tissue And By Promoting Glycolysis And Glycogenesis In Liver And Muscle.

Glucose Homeostasis and Starvation Glucose Homeostasis: the balance of insulin and glucagon to maintain blood glucose. Insulin: secreted by the pancreas in response to elevated blood glucose following a meal. Insulin:Glucagon Ratio: everything that happens to glucose, amino acids and fat in the well fed state depends upon a high insulin to glucagon ratio. Glucagon: a fall in blood glucose increases the release of glucagon from the pancreas to promote glucose production. Glucose Tolerance Test: evaluates how quickly an individual can restore their blood glucose to normal following ingestion of a large amount of glucose, i.e. measures an individuals ability to maintain glucose homeostasis Diabetic: can not produce or respond to insulin so thus has a very low glucose tolerance Glucose, Protein and Fat Pathways: Obese Individuals: even with prolonged medically supervised fasting have plasma glucose levels that remain relatively constant even after three months. Glucose / Fatty Acid / Ketone Body Cycle: "explains the reciprocal relationship between the oxidation of glucose versus fatty acids or ketone bodies" Principal Hormone Effects on the Glucose-Fatty Acid Cycle: Under conditions of Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

Subscribe to Receive a New Video Every Saturday: http://bit.ly/SubTealSwan Free Gift: By pre-ordering Teals new book The Anatomy of Loneliness you receive the Connection Process audio book for free. Just email your proof of purchase to [email protected] [Limited time offer]. http://bit.ly/AnatomyOfLoneliness -------------------------------------------------------------------------------------- Teal Swan is a revolutionary for personal transformation. As a renowned author, speaker and social media star, she travels the world teaching self-development and teaching people how to transform their emotional, mental, physical and spiritual pain. -------------------------------------------------------------------------------------- Daily Updates, Monthly Online Synchronization Workshops & More: http://bit.ly/TealSwanPremium Website: https://www.tealswan.com Facebook: https://www.facebook.com/tealswanoffi... Instagram: https://www.instagram.com/tealswanoff... Twitter: https://twitter.com/realtealswan Meditations, Books, Merchandise & Frequency Paintings: https://tealswan.com/shop -------------------------------------------------------------------------------------- Camera/Lighting Studio Setup and Equipment List -Camera- Black Magic Pocket Camera: https://amzn.to/2CISYeH Sigma 17-50mm Lens: https://amzn.to/2yDrxyD Lens Adaptor: https://amzn.to/2Ei3s6n Manfrotto Head + Tripod: https://amzn.to/2RMsTQl -Audio- H4 Zoom Recorder: https://amzn.to/2EiPXDJ Outdoor Mic Windscreen: https://amzn.to/2CIKaFM -Lighting- GreenScreen Kit: https://amzn.to/2RNtTDR 2 Dimmable 660 LED Lights: https://amzn.to/2yCtyuN -------------------------------------------------------------------------------------- Beginning Song: Kuan Yin's Mantra (c) 2002 Lisa Thiel

Breakdown Of Other Energy Sources.

The production of ATP through cellular respiration is not limited to glucose as the sole reactant molecule. Whether through fermentation or aerobic respiration, other fuel molecules frequently provide the ATP energy to support cellular life. For example, lactic acid-producing bacteria in the genus Lactobacillus prefer lactose, the disaccharide found in milk, as the starting material for fermentation. Carbohydrates, lipids, and proteins are commonly used by many living organisms to obtain energy by cellular respiration. Because the chemical structure of each of these biomolecules differs, each biomolecule group enters the respiration pathway at the most energy-efficient point after one or a few priming reactions. Carbohydrates. Simple carbohydrates, the mono- and disaccharides, generally enter aerobic respiration at the beginning of glycolysis. Disaccharides are first hydrolyzed into monomers, and then each monosaccharide enters the pathway as a reactant for one of the reactions during glycolysis. For example, fructose is “primed” in many cells by phosphorylation and can enter glycolysis as a reactant for the third reaction (of ten) in the pathway. In other cells, fructose is sp Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more
Share on facebook

Respiratory acidosis #sign and symptoms of Respiratory acidosis Respiratory acidosis ABGs Analyse https://youtu.be/L5MWy1iHacI Plz share n subscribe my chanel is a condition that occurs when the lungs cant remove enough of the Suctioning https://youtu.be/hMJGkxvXTW0 carbon dioxide (CO2) produced by the body. Excess CO2 causes the pH of blood and other bodily fluids to decrease, making them too acidic. Normally, the body is able to balance the ions that control acidity. This balance is measured on a pH scale from 0 to 14. Acidosis occurs when the pH of the blood falls below 7.35 (normal blood pH is between 7.35 and 7.45).Rinku Chaudhary NSG officer AMU ALIGARH https://www.facebook.com/rinkutch/ Respiratory acidosis is typically caused by an underlying disease or condition. This is also called respiratory failure or ventilatory failure. Suctioning https://youtu.be/hMJGkxvXTW0 Normally, the lungs take in oxygen and exhale CO2. Oxygen passes from the lungs into the blood. CO2 passes from the blood into the lungs. However, sometimes the lungs cant remove enough CO2. This may be due to a decrease in respiratory rate or decrease in air movement due to an underlying condition such as: asthma COPD pneumonia sleep apnea TYPES Forms of respiratory acidosis There are two forms of respiratory acidosis: acute and chronic. Acute respiratory acidosis occurs quickly. Its a medical emergency. Left untreated, symptoms will get progressively worse. It can become life-threatening. Chronic respiratory acidosis develops over time. It doesnt cause symptoms. Instead, the body adapts to the increased acidity. For example, the kidneys produce more bicarbonate to help maintain balance. Chronic respiratory acidosis may not cause symptoms. Developing another illness may cause chronic respiratory acidosis to worsen and become acute respiratory acidosis. SYMPTOMS Symptoms of respiratory acidosis Initial signs of acute respiratory acidosis include: headache anxiety blurred vision restlessness confusion Without treatment, other symptoms may occur. These include: https://www.healthline.com/health/res... sleepiness or fatigue lethargy delirium or confusion shortness of breath coma The chronic form of respiratory acidosis doesnt typically cause any noticeable symptoms. Signs are subtle and nonspecific and may include: memory loss sleep disturbances personality changes CAUSES Common causes of respiratory acidosis The lungs and the kidneys are the major organs that help regulate your bloods pH. The lungs remove acid by exhaling CO2, and the kidneys excrete acids through the urine. The kidneys also regulate your bloods concentration of bicarbonate (a base). Respiratory acidosis is usually caused by a lung disease or condition that affects normal breathing or impairs the lungs ability to remove CO2. Some common causes of the chronic form are: asthma chronic obstructive pulmonary disease (COPD) acute pulmonary edema severe obesity (which can interfere with expansion of the lungs) neuromuscular disorders (such as multiple sclerosis or muscular dystrophy) scoliosis Some common causes of the acute form are: lung disorders (COPD, emphysema, asthma, pneumonia) conditions that affect the rate of breathing muscle weakness that affects breathing or taking a deep breath obstructed airways (due to choking or other causes) sedative overdose cardiac arrest DIAGNOSIS How is respiratory acidosis diagnosed? The goal of diagnostic tests for respiratory acidosis is to look for any pH imbalance, to determine the severity of the imbalance, and to determine the condition causing the imbalance. Several tools can help doctors diagnose respiratory acidosis. Blood gas measurement Blood gas is a series of tests used to measure oxygen and CO2 in the blood. A healthcare provider will take a sample of blood from your artery. High levels of CO2 can indicate acidosis.

Respiratory Substrates

define the term respiratory substrate; explain the difference in relative energy values of carbohydrate, lipid and protein Hydrogens The more hydrogens, the more ATP is produced in the electron transport chain Some molecules have more hydrogens than others The more hydrogen atoms there are in a respiratory substrate, the more ATP is produced If there are more hydrogen atoms per mole (fixed amount) of substrate, the more oxygen is needed to be the final acceptor Carbohydrates Glucose is the most common substrate for most mammalian cells Animals store glucose as glycogen, and plants as starch Theoretical maximum energy yield for one mole of glucose is 2870 kJ It takes 30.6 kJ to produce 1 mol ATP Respiration of 1 mol glucose should produce nearly 94 mol ATP, but the actual yield is more like 30, as it has an efficiency of 32% Remaining energy used to generate heat Protein Excess amino acids are deaminated (removal of amine group converted to urea) Rest is changed to glycogen or fat Protein is then hydrolysed (split with water) to amino acids which can be respired Some can be converted to pyruvate, or acetate and then is carried to Krebs cycle Some can enter Krebs directly Number of h Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Can Fatty Acids Can Be Converted To Glucose?

    Not to be confused with Glycogenesis or Glyceroneogenesis. Simplified Gluconeogenesis Pathway Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and fr ...

    ketosis Apr 22, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. ...

    ketosis Apr 1, 2018
  • Can Fatty Acids Be Converted To Glucose?

    Fat molecules consist of three fatty acid chains connected by a glycerol backbone. Fatty acids are basically long chains of carbon and hydrogen and are the major source of energy during normal activities. Fatty acids are broken down by progressively cleaving two carbon bits and converting these to acetyl coenzyme A. The acetyl CoA is the oxidized by the same citric acid cycle involved in the metabolism of glucose. For every two carbons in a fatt ...

    ketosis Apr 24, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids.

    You have seen how proteins can be built up from amino acids with a particular primary,secondary, tertiary and even quaternary structure to serve particular functions. If theproteins are damaged, or for some reason are no longer needed or no longer able to servethose functions, the proteins can be broken down by hydrolysis reactions to reform theamino acids from which they were made. In the body this hydrolysis process is catalyzed byenzymes. Yes ...

    ketosis Apr 1, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    Transamination: attaching amino group to a carboxyl group; process by which cells make nonessential amino acids Does denaturation of protein affect the nutritional content of the protein? Name some examples of protein denaturation in foods. Denaturation: proteins uncoiling; results from change in pH (acids), addition of heat, high salt concentration, mechanical breakdown It does NOT change the nutritional content of protein. High fevers (105.8) ...

    ketosis Apr 2, 2018
  • Why Can't Fatty Acids Be Converted To Glucose

    Gluconeogenesis (abbreviated GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. It is one of the two main mechanisms humans and many other animals use to keep blood glucose levels from dropping too low (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis). Gluconeog ...

    ketosis Apr 24, 2018

More in ketosis