diabetestalk.net

Alcoholic Starvation Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Background In 1940, Dillon and colleagues first described alcoholic ketoacidosis (AKA) as a distinct syndrome. AKA is characterized by metabolic acidosis with an elevated anion gap, elevated serum ketone levels, and a normal or low glucose concentration. [1, 2] Although AKA most commonly occurs in adults with alcoholism, it has been reported in less-experienced drinkers of all ages. Patients typically have a recent history of binge drinking, little or no food intake, and persistent vomiting. [3, 4, 5] A concomitant metabolic alkalosis is common, secondary to vomiting and volume depletion (see Workup). [6] Treatment of AKA is directed toward reversing the 3 major pathophysiologic causes of the syndrome, which are: This goal can usually be achieved through the administration of dextrose and saline solutions (see Treatment). Continue reading >>

Postmortem Diagnosis Of Alcoholic Ketoacidosis | Alcohol And Alcoholism | Oxford Academic

Postmortem Diagnosis Of Alcoholic Ketoacidosis | Alcohol And Alcoholism | Oxford Academic

Aims: The aim of this article is to review the forensic literature covering the postmortem investigations that are associated with alcoholic ketoacidosis fatalities and report the results of our own analyses. Methods: Eight cases of suspected alcoholic ketoacidosis that had undergone medico-legal investigations in our facility from 2011 to 2013 were retrospectively selected. A series of laboratory parameters were measured in whole femoral blood, postmortem serum from femoral blood, urine and vitreous humor in order to obtain a more general overview on the biochemical and metabolic changes that occur during alcoholic ketoacidosis. Most of the tested parameters were chosen among those that had been described in clinical and forensic literature associated with alcoholic ketoacidosis and its complications. Results: Ketone bodies and carbohydrate-deficient transferrin levels were increased in all cases. Biochemical markers of generalized inflammation, volume depletion and undernourishment showed higher levels. Adaptive endocrine reactions involving insulin, glucagon, cortisol and triiodothyronine were also observed. Conclusions: Metabolic and biochemical disturbances characterizing alcoholic ketoacidosis can be reliably identified in the postmortem setting. The correlation of medical history, autopsy findings and biochemical results proves therefore decisive in identifying pre-existing disorders, excluding alternative causes of death and diagnosing alcoholic ketoacidosis as the cause of death. Alcoholic ketoacidosis: definition and clinical features The entity of alcoholic ketoacidosis, sometimes called alcoholic acidosis in the literature, was first described by Dillon et al. in 1940. In this report, the authors described a series of nine patients who had episodes of sever Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Seen in patients with recent history of binge drinking with little/no nutritional intake Anion gap metabolic acidosis associated with acute cessation of ETOH consumption after chronic abuse Characterized by high serum ketone levels and an elevated AG Consider other causes of elevated AG, as well as co-ingestants Concomitant metabolic alkalosis can occur from dehydration (volume depletion) and emesis Ethanol metabolism depletes NAD stores[1] Results in inhibition of Krebs cycle, depletion of glycogen stores, and ketone formation High NADH:NAD also results in increased lactate production Acetoacetate is metabolized to acetone so elevated osmolal gap may also be seen Differential Diagnosis Starvation Ketosis Binge drinking ending in nausea, vomiting, and decreased intake Positive serum ketones Wide anion gap metabolic acidosis without alternate explanation Urine ketones may be falsely negative or low Lab measured ketone is acetoacetate May miss beta-hydroxybutyrate Consider associated diseases (ie pancreatitis, rhabdomyolysis, hepatitis, infections) Oral nutrition if able to tolerate Consider bicarb if life-threatening acidosis (pH <7.1) unresponsive to fluid therapy Discharge home after treatment if able to tolerate POs and acidosis resolved Consider admission for those with severe volume depletion and/or acidosis Hypoglycemia is poor prognostic feature, indicating depleted glycogen stores See Also Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis Damian Baalmann, 2nd year EM resident A 45-year-old male presents to your emergency department with abdominal pain. He is conscious, lucid and as the nurses are hooking up the monitors, he explains to you that he began experiencing abdominal pain, nausea, vomiting about 2 days ago. Exam reveals a poorly groomed male with dry mucous membranes, diffusely tender abdomen with voluntary guarding. He is tachycardic, tachypneic but normotensive. A quick review of the chart reveals a prolonged history of alcohol abuse and after some questioning, the patient admits to a recent binge. Pertinent labs reveal slightly elevated anion-gap metabolic acidosis, normal glucose, ethanol level of 0, normal lipase and no ketones in the urine. What are your next steps in management? Alcoholic Ketoacidosis (AKA): What is it? Ketones are a form of energy made by the liver by free fatty acids released by adipose tissues. Normally, ketones are in small quantity (<0.1 mmol/L), but sometimes the body is forced to increase its production of these ketones. Ketones are strong acids and when they accumulate in large numbers, their presence leads to an acidosis. In alcoholics, a combination or reduced nutrient intake, hepatic oxidation of ethanol, and dehydration can lead to ketoacidosis. Alcoholics tend to rely on ethanol for their nutrient intake and when the liver metabolizes ethanol it generates NADH. This NADH further promotes ketone formation in the liver. Furthermore, ethanol promotes diuresis which leads to dehydration and subsequently impairs ketone excretion in the urine. Alcoholic Ketoacidosis: How do I recognize it? Typical history involves a chronic alcohol abuser who went on a recent binge that was terminated by severe nausea, vomiting, and abdominal pain. These folk Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

What is alcoholic ketoacidosis? Cells need glucose (sugar) and insulin to function properly. Glucose comes from the food you eat, and insulin is produced by the pancreas. When you drink alcohol, your pancreas may stop producing insulin for a short time. Without insulin, your cells won’t be able to use the glucose you consume for energy. To get the energy you need, your body will start to burn fat. When your body burns fat for energy, byproducts known as ketone bodies are produced. If your body is not producing insulin, ketone bodies will begin to build up in your bloodstream. This buildup of ketones can produce a life-threatening condition known as ketoacidosis. Ketoacidosis, or metabolic acidosis, occurs when you ingest something that is metabolized or turned into an acid. This condition has a number of causes, including: shock kidney disease abnormal metabolism In addition to general ketoacidosis, there are several specific types. These types include: alcoholic ketoacidosis, which is caused by excessive consumption of alcohol diabetic ketoacidosis (DKA), which mostly develops in people with type 1 diabetes starvation ketoacidosis, which occurs most often in women who are pregnant, in their third trimester, and experiencing excessive vomiting Each of these situations increases the amount of acid in the system. They can also reduce the amount of insulin your body produces, leading to the breakdown of fat cells and the production of ketones. Alcoholic ketoacidosis can develop when you drink excessive amounts of alcohol for a long period of time. Excessive alcohol consumption often causes malnourishment (not enough nutrients for the body to function well). People who drink large quantities of alcohol may not eat regularly. They may also vomit as a result of drinking too Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Go to: CHARACTERISATION In 1940, Dillon et al1 described a series of nine patients who had episodes of severe ketoacidosis in the absence of diabetes mellitus, all of whom had evidence of prolonged excessive alcohol consumption. It was not until 1970 that Jenkins et al2 described a further three non‐diabetic patients with a history of chronic heavy alcohol misuse and recurrent episodes of ketoacidosis. This group also proposed a possible underlying mechanism for this metabolic disturbance, naming it alcoholic ketoacidosis. Further case series by Levy et al, Cooperman et al, and Fulop et al were subsequently reported, with remarkably consistent features.3,4,5 All patients presented with a history of prolonged heavy alcohol misuse, preceding a bout of particularly excessive intake, which had been terminated several days earlier by nausea, severe vomiting, and abdominal pain. Clinical signs included tachypnoea, tachycardia, and hypotension. In 1974, Cooperman's series of seven ketoacidotic alcoholic patients all displayed diffuse epigastric tenderness on palpation.4 In contrast to patients with diabetic ketoacidosis, the patients were usually alert and lucid despite the severity of the acidosis and marked ketonaemia. When altered mental status occurred, this was clearly attributable to other causes. Laboratory results included absent blood alcohol with normal or low blood glucose level, no glycosuria, and a variably severe metabolic acidosis with a raised anion gap. This acidosis appeared to result from the accumulation in plasma of lactate and ketone bodies including beta‐hydroxybutyrate (BOHB) and acetoacetate (AcAc).3 Cooperman et al found that near patient testing for ketone bodies using nitroprusside test (Acetest, Ketostix) produced a low to moderate result in th Continue reading >>

Ketoacidosis

Ketoacidosis

Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate. Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.[1] Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis. Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover.[2] Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone. Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia. Cause[edit] Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.[3] In diabetic ketoacidosis, a high concentration of ketone bodies is usually accomp Continue reading >>

Diabetic, Alcoholic And Starvation Ketoacidosis

Diabetic, Alcoholic And Starvation Ketoacidosis

Copious amounts of ketones which are generated in insulin-deficient or insulin-unresponsive patients will give rise to a high anion gap metabolic acidosis. Ketones are anions, and they form the high anion gap. Management of DKA and HONK is discussed elsewhere. Meet the ketones Chemically speaking, a ketone is anything with a carbonyl group between a bunch of other carbon atoms. The above are your three typical ketoacidosis-associated ketone bodies. The biochemistry nerds among us will hasten to add that the beta-hydroxybutyrate is in fact not a ketone but a carboxylic acid, but - because it is associated with ketoacidosis, we will continue to refer to it as a ketone for the remainder of this chapter, in the spirit of convention. In the same spirit, we can suspend our objections to acetone being included in a discussion of ketoacidosis, which (though a true ketone) is in fact not acidic or basic, as it does not ionise at physiological pH (its pKa is 20 or so). So really, the only serious ketone acid is acetoacetate, which has a pKa of 3.77. However, beta-hydroxybutyrate is the prevalent ketone in ketoacidosis; the normal ratio of beta-hydroxybutyrate and acetoacetate is 3:1, and it can rise to 10:1 in diabetic ketoacidosis. Acetone is the least abundant. The metabolic origin of ketones The generation of ketones is a normal response to fasting, which follows the depletion of hepatic glycogen stores. Let us discuss normal physiology for a change. You, a healthy adult without serious alcohol problems, are fasting from midnight for a routine elective hernia repair. You will go to be after dinner with a few nice lumps of undigested food in your intestine, as well as about 75g of hepatic glycogen. As you sleep, you gradually digest the food and dip into the glycogen store. At Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic ketoacidosis is a metabolic complication of alcohol use and starvation characterized by hyperketonemia and anion gap metabolic acidosis without significant hyperglycemia. Alcoholic ketoacidosis causes nausea, vomiting, and abdominal pain. Diagnosis is by history and findings of ketoacidosis without hyperglycemia. Treatment is IV saline solution and dextrose infusion. Alcoholic ketoacidosis is attributed to the combined effects of alcohol and starvation on glucose metabolism. Alcohol diminishes hepatic gluconeogenesis and leads to decreased insulin secretion, increased lipolysis, impaired fatty acid oxidation, and subsequent ketogenesis, causing an elevated anion gap metabolic acidosis. Counter-regulatory hormones are increased and may further inhibit insulin secretion. Plasma glucose levels are usually low or normal, but mild hyperglycemia sometimes occurs. Diagnosis requires a high index of suspicion; similar symptoms in an alcoholic patient may result from acute pancreatitis, methanol or ethylene glycol poisoning, or diabetic ketoacidosis (DKA). In patients suspected of having alcoholic ketoacidosis, serum electrolytes (including magnesium), BUN and creatinine, glucose, ketones, amylase, lipase, and plasma osmolality should be measured. Urine should be tested for ketones. Patients who appear significantly ill and those with positive ketones should have arterial blood gas and serum lactate measurement. The absence of hyperglycemia makes DKA improbable. Those with mild hyperglycemia may have underlying diabetes mellitus, which may be recognized by elevated levels of glycosylated Hb (HbA1c). Typical laboratory findings include a high anion gap metabolic acidosis, ketonemia, and low levels of potassium, magnesium, and phosphorus. Detection of acidosis may be com Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Increased production of ketone bodies due to: Dehydration (nausea/vomiting, ADH inhibition) leads to increased stress hormone production leading to ketone formation Depleted glycogen stores in the liver (malnutrition/decrease carbohydrate intake) Elevated ratio of NADH/NAD due to ethanol metabolism Increased free fatty acid production Elevated NADH/NAD ratio leads to the predominate production of β–hydroxybutyrate (BHB) over acetoacetate (AcAc) Dehydration Fever absent unless there is an underlying infection Tachycardia (common) due to: Dehydration with associated orthostatic changes Concurrent alcohol withdrawal Tachypnea: Common Deep, rapid, Kussmaul respirations frequently present Nausea and vomiting Abdominal pain (nausea, vomiting, and abdominal pain are the most common symptoms): Usually diffuse with nonspecific tenderness Epigastric pain common Rebound tenderness, abdominal distension, hypoactive bowel sounds uncommon Mandates a search for an alternative, coexistent illness Decreased urinary output from hypovolemia Mental status: Minimally altered as a result of hypovolemia and possibly intoxication Altered mental status mandates a search for other associated conditions such as: Head injury, cerebrovascular accident (CVA), or intracranial hemorrhage Hypoglycemia Alcohol withdrawal Encephalopathy Toxins Visual disturbances: Reports of isolated visual disturbances with AKA common History Chronic alcohol use: Recent binge Abrupt cessation Physical Exam Findings of dehydration most common May have ketotic odor Kussmaul respirations Palmar erythema (alcoholism) Lab Acid–base disturbance: Increased anion gap metabolic acidosis hallmark Mixed acid–base disturbance common: Respiratory alkalosis Metabolic alkalosis secondary to vomiting and dehydration Hyperchlorem Continue reading >>

Alcoholic Ketoacidosis – A Case Report

Alcoholic Ketoacidosis – A Case Report

Summarized from Noor N, Basavaraju K, Sharpstone D. Alcoholic ketoacidosis: a case report and review of the literature. Oxford Medical Case Reports 2016; 3: 31-33 Three parameters generated during blood gas analysis, pH, pCO2 and bicarbonate, provide the means for assessment of patient acid-base status, which is frequently disturbed in the acutely/critically ill. Four broad classes of acid-base disturbance are recognized: metabolic acidosis, respiratory acidosis, metabolic alkalosis and respiratory alkalosis. Metabolic acidosis, which is characterized by primary reduction in pH and bicarbonate, and secondary (compensatory) decrease in pCO2, has many possible causes including the abnormal accumulation of the keto-acids, β-hydroxybutyrate and acetoacetate. This particular form of metabolic acidosis, called ketoacidosis, has three etiologies giving rise to three quite separate conditions with common biochemical features: diabetes (diabetic ketoacidosis); excessive alcohol ingestion (alcoholic ketoacidosis) and severe starvation (starvation ketoacidosis). Diabetic ketoacidosis, which is the most common of the three, is the subject of a recent review (discussed below) whilst alcoholic ketoacidosis is the focus of this recent case study report. The case concerns a 64-year-old lady who presented to the emergency department of her local hospital with acute-onset abdominal pain, nausea, vomiting and shortness of breath. Blood gas results (pH 7.10, bicarbonate 2.9 mmol/L) confirmed metabolic acidosis, and the presence of raised ketones (serum ketones 5.5 mmol/L) allowed a diagnosis of ketoacidosis. Initially, doctors caring for the patient entertained the possibility that the lady was suffering diabetic ketoacidosis, but her normal blood glucose concentration (5.8 mmol/L) and pr Continue reading >>

Ketoacidosis

Ketoacidosis

GENERAL ketoacidosis is a high anion gap metabolic acidosis due to an excessive blood concentration of ketone bodies (keto-anions). ketone bodies (acetoacetate, beta-hydroxybutyrate, acetone) are released into the blood from the liver when hepatic lipid metabolism has changed to a state of increased ketogenesis. a relative or absolute insulin deficiency is present in all cases. CAUSES The three major types of ketosis are: (i) Starvation ketosis (ii) Alcoholic ketoacidosis (iii) Diabetic ketoacidosis STARVATION KETOSIS when hepatic glycogen stores are exhausted (eg after 12-24 hours of total fasting), the liver produces ketones to provide an energy substrate for peripheral tissues. ketoacidosis can appear after an overnight fast but it typically requires 3 to 14 days of starvation to reach maximal severity. typical keto-anion levels are only 1 to 2 mmol/l and this will usually not alter the anion gap. the acidosis even with quite prolonged fasting is only ever of mild to moderate severity with keto-anion levels up to a maximum of 3 to 5 mmol/l and plasma pH down to 7.3. ketone bodies also stimulate some insulin release from the islets. patients are usually not diabetic. ALCOHOLIC KETOSIS Presentation a chronic alcoholic who has a binge, then stops drinking and has little or no oral food intake for a few days (ethanol and fasting) volume depletion is common and this can result in increased levels of counter regulatory hormones (eg glucagon) levels of free fatty acids (FFA) can be high (eg up to 3.5mM) providing plenty of substrate for the altered hepatic lipid metabolism to produce plenty of ketoanions GI symptoms are common (eg nausea, vomiting, abdominal pain, haematemesis, melaena) acidaemia may be severe (eg pH down to 7.0) plasma glucose may be depressed or normal or Continue reading >>

Emdocs.net Emergency Medicine Educationtoxcards: Alcoholic Ketoacidosis - Emdocs.net - Emergency Medicine Education

Emdocs.net Emergency Medicine Educationtoxcards: Alcoholic Ketoacidosis - Emdocs.net - Emergency Medicine Education

Author: Cynthia Santos, MD (Senior Medical Toxicology Fellow, Emory University School of Medicine) // Edited by: Alex Koyfman, MD (@EMHighAK, EM Attending Physician, UT Southwestern Medical Center / Parkland Memorial Hospital) and Brit Long, MD (@long_brit) A 45 year old male presents intoxicated, smelling of alcohol and appears disheveled with vomit on his clothes. He is sleepy but arousable to noxious stimuli. His serum ethanol level is 143 mg/dL. Na 135, K 3.9, Cl 97, CO2 20, BUN 33, Cr 1.1. Lactate 3.1. pH 7.35, CO2 28, HCO3 15. His urine is negative for ketones. His vitals are HR 103, RR 30, BP 115/65, O2 98% RA. Could these laboratory results be consistent with alcohol ketoacidosis (AKA)? The classic laboratory findings in patients with AKA include an elevated anion gap metabolic acidosis and an elevated lactate. Early in AKA patients may be negative for ketones when the nitroprusside test is used because it does not detect beta-hydroxybutyrate. As patients recover, the nitroprusside test will become positive as beta-hydroxybutyrate gets converted to acetone and acetate. Patients with AKA typically have elevated anion gap metabolic acidosis. However, vomiting may cause a primary metabolic alkalosis and a compensatory respiratory alkalosis which may result in a normal or even elevated pH. AKA patients, as compared to DKA patients, typically have higher pH, lower K and Cl, and higher HCO3 in their blood tests. As ethanol is metabolized by ADH and ALDH to acetaldehyde and acetate, respectively, an increased amount of NADH forms which causes a high redox state and excess of reducing potential (increased NADH:NAD+ ratio). Increased lactate due to pyruvate shunting: Reduced caloric intake, decreased glycogen stores, and thiamine depletion results in amino acids being c Continue reading >>

Insulin Drip In Euglycemic Ketoacidosis - A Tough Nut To Crack!

Insulin Drip In Euglycemic Ketoacidosis - A Tough Nut To Crack!

Abstract: This abstract also was presented at the 15th annual Rachmiel Levine Diabetes and Obesity Symposium on March 2, 2015, Levine Poster Number: 39. Background: Metabolic ketoacidosis has been frequently associated with three major etiologies which include diabetes, alcohol and starvation. Treatment is tailored towards the cause and usually involves crystalloid infusion in alcohol and starvation ketosis and implementation of insulin drip in diabetic ketoacidosis[1]. On the contrary our patient presents with a challenging scenario which warrants further insight to the treatment strategies of metabolic ketoacidosis. Clinical Case: A 59-year-old male with past medical history of diabetes and alcoholism presented to the ER with coffee ground emesis for 3 days. One week prior to admission the patient fell off the stairs and injured his left shoulder. Thereafter he consumed alcohol for pain relief and had not eaten anything. He admits to not taking his insulin for last 2 days. Upon admission vitals were stable. His labs were significant for Hb- 10.4 (n 11.6-16.8) g/dL, INR- 1.0 (n 0.9-1.1), blood glucose- 106 (n 70-115) mg/dL, BUN- 15 (n 6-20) mg/dL, Cr- 0.6 (n 0.7-1.2) mg/dL, Na- 133 (n 136-145) mmol/L, K- 3.1(n 3.6-5.1) mmol/L, Cl- 84 (n 90-110) mmol/L, HCO3- 16 (n 22-28) mmol/L, AG- 34 (n 2.6-10.6) mmol/L, B-Hydroxy > 8 (n <0.3) mmol/L -, Lactic Acid- 1.3 (n 0.5-2.2) mmol/L, Serum Osm- 311 (n 280-290) mOsm/Kg . Urine was positive for ketones. PH- on ABG was 7.29 (n 7.350-7.450). Alcohol level was 211(n 0-10) mg/dL. Urine Drug Screen was negative for drugs. Since the patient was euglycemic, IV insulin drip was not initiated and he was presumably treated for starvation and alcohol ketoacidosis with multivitamins , thiamine and D5NS @ 150 mL/hour. Patient was kept NPO, fi Continue reading >>

Fasting Ketosis And Alcoholic Ketoacidosis

Fasting Ketosis And Alcoholic Ketoacidosis

INTRODUCTION Ketoacidosis is the term used for metabolic acidoses associated with an accumulation of ketone bodies. The most common cause of ketoacidosis is diabetic ketoacidosis. Two other causes are fasting ketosis and alcoholic ketoacidosis. Fasting ketosis and alcoholic ketoacidosis will be reviewed here. Issues related to diabetic ketoacidosis are discussed in detail elsewhere. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment".) PHYSIOLOGY OF KETONE BODIES There are three major ketone bodies, with the interrelationships shown in the figure (figure 1): Acetoacetic acid is the only true ketoacid. The more dominant acid in patients with ketoacidosis is beta-hydroxybutyric acid, which results from the reduction of acetoacetic acid by NADH. Beta-hydroxybutyric acid is a hydroxyacid, not a true ketoacid. Continue reading >>

More in ketosis