diabetestalk.net

Acidosis And Alkalosis Chart

Acid Base Disorders

Acid Base Disorders

Arterial blood gas analysis is used to determine the adequacy of oxygenation and ventilation, assess respiratory function and determine the acid–base balance. These data provide information regarding potential primary and compensatory processes that affect the body’s acid–base buffering system. Interpret the ABGs in a stepwise manner: Determine the adequacy of oxygenation (PaO2) Normal range: 80–100 mmHg (10.6–13.3 kPa) Determine pH status Normal pH range: 7.35–7.45 (H+ 35–45 nmol/L) pH <7.35: Acidosis is an abnormal process that increases the serum hydrogen ion concentration, lowers the pH and results in acidaemia. pH >7.45: Alkalosis is an abnormal process that decreases the hydrogen ion concentration and results in alkalaemia. Determine the respiratory component (PaCO2) Primary respiratory acidosis (hypoventilation) if pH <7.35 and HCO3– normal. Normal range: PaCO2 35–45 mmHg (4.7–6.0 kPa) PaCO2 >45 mmHg (> 6.0 kPa): Respiratory compensation for metabolic alkalosis if pH >7.45 and HCO3– (increased). PaCO2 <35 mmHg (4.7 kPa): Primary respiratory alkalosis (hyperventilation) if pH >7.45 and HCO3– normal. Respiratory compensation for metabolic acidosis if pH <7.35 and HCO3– (decreased). Determine the metabolic component (HCO3–) Normal HCO3– range 22–26 mmol/L HCO3 <22 mmol/L: Primary metabolic acidosis if pH <7.35. Renal compensation for respiratory alkalosis if pH >7.45. HCO3 >26 mmol/L: Primary metabolic alkalosis if pH >7.45. Renal compensation for respiratory acidosis if pH <7.35. Additional definitions Osmolar Gap Use: Screening test for detecting abnormal low MW solutes (e.g. ethanol, methanol & ethylene glycol [Reference]) An elevated osmolar gap (>10) provides indirect evidence for the presence of an abnormal solute which is prese Continue reading >>

Abg Interpreter

Abg Interpreter

pH CO2 HCO3 Result appears in here. Normal Arterial Blood Gas Values pH 7.35-7.45 PaCO2 35-45 mm Hg PaO2 80-95 mm Hg HCO3 22-26 mEq/L O2 Saturation 95-99% BE +/- 1 Four-Step Guide to ABG Analysis Is the pH normal, acidotic or alkalotic? Are the pCO2 or HCO3 abnormal? Which one appears to influence the pH? If both the pCO2 and HCO3 are abnormal, the one which deviates most from the norm is most likely causing an abnormal pH. Check the pO2. Is the patient hypoxic? I used Swearingen's handbook (1990) to base the results of this calculator. The book makes the distinction between acute and chronic disorders based on symptoms from identical ABGs. This calculator only differentiates between acute (pH abnormal) and compensated (pH normal). Compensation can be seen when both the PCO2 and HCO3 rise or fall together to maintain a normal pH. Part compensation occurs when the PCO2 and HCO3 rise or fall together but the pH remains abnormal. This indicates a compensatory mechanism attempted to restore a normal pH. I have not put exact limits into the calculator. For example, it will perceive respiratory acidosis as any pH < 7.35 and any CO2 > 45 (i.e. a pH of 1 and CO2 of 1000). These results do not naturally occur. pH PaCO2 HCO3 Respiratory Acidosis Acute < 7.35 > 45 Normal Partly Compensated < 7.35 > 45 > 26 Compensated Normal > 45 > 26 Respiratory Alkalosis Acute > 7.45 < 35 Normal Partly Compensated > 7.45 < 35 < 22 Compensated Normal < 35 < 22 Metabolic Acidosis Acute < 7.35 Normal < 22 Partly Compensated < 7.35 < 35 < 22 Compensated Normal < 35 < 22 Metabolic Alkalosis Acute > 7.45 Normal > 26 Partly Compensated > 7.45 > 45 > 26 Compensated Normal > 45 > 26 Mixed Disorders It's possible to have more than one disorder influencing blood gas values. For example ABG's with an alkale Continue reading >>

Uncompensated, Partially Compensated, Or Combined Abg Problems

Uncompensated, Partially Compensated, Or Combined Abg Problems

Arterial Blood Gas (ABG) analysis requires in-depth expertise. If the results are not understood right, or are wrongly interpreted, it can result in wrong diagnosis and end up in an inappropriate management of the patient. ABG analysis is carried out when the patient is dealing with the following conditions: • Breathing problems • Lung diseases (asthma, cystic fibrosis, COPD) • Heart failure • Kidney failure ABG reports help in answering the following questions: 1. Is there acidosis or alkalosis? 2. If acidosis is present, whether it is in an uncompensated state, partially compensated state, or in fully compensated state? 3. Whether acidosis is respiratory or metabolic? ABG reports provide the following descriptions: PaCO2 (partial pressure of dissolved CO2 in the blood) and PaO2 (partial pressure of dissolved O2 in the blood) describe the efficiency of exchange of gas in the alveolar level into the blood. Any change in these levels causes changes in the pH. HCO3 (bicarbonate in the blood) maintains the pH of the blood within normal range by compensatory mechanisms, which is either by retaining or increasing HCO3 excretion by the kidney. When PaCO2 increases, HCO3 decreases to compensate the pH. The following table summarizes the changes: ABG can be interpreted using the following analysis points: Finding acidosis or alkalosis: • If pH is more it is acidosis, if pH is less it is alkalosis. Finding compensated, partially compensated, or uncompensated ABG problems: • When PaCO2 is high, but pH is normal instead of being acidic, and if HCO3 levels are also increased, then it means that the compensatory mechanism has retained more HCO3 to maintain the pH. • When PaCO2 and HCO3 values are high but pH is acidic, then it indicates partial compensation. It means t Continue reading >>

Arterial Blood Gas (abg) Interpretation For Medical Students, Osces And Mrcp Paces

Arterial Blood Gas (abg) Interpretation For Medical Students, Osces And Mrcp Paces

Arterial Blood Gas (ABG) interpretation for medical students, OSCEs and MRCP Arterial Blood Gas (ABG) interpretation for medical students, OSCEs and MRCP PACES This section presents how to interpret arterial blood gases. It explains each component in turn followed by clinical examples to work through. The most important points when assessing a patient are the history, examination and basic observations. Investigations such as arterial blood gases add to the information you have already gained to guide your management. Arterial blood gas analysis can be used to assess gas exchange and acid base status as well as to provide immediate information about electrolytes. It is also useful to have access to any previous gases. This is particularly important if your patient is known to have chronic respiratory disease with existing chronic ABG changes. Normal values for arterial blood gas (ABG) Normal values are given below. Note that these may vary slightly between analysers. Be sure to know the normal ranges and units for the analyser you will be using. Click here for related pages: ABG examples and ABG exam questions pH is a logarithmic scale of the concentration of hydrogen ions in a solution. It is inversely proportional to the concentration of hydrogen ions. When a solution becomes more acidic the concentration of hydrogen ions increases and the pH falls. Normally the bodys pH is closely controlled at between 7.35 7.45. This is achieved through buffering and excretion of acids. Buffers include plasma proteins and bicarbonate (extracellular) and proteins, phosphate and haemoglobin (intracellularly). Hydrogen ions are excreted via the kidney and carbon dioxide is excreted via the lungs. Changes in ventilation are the primary way in which the concentration of H+ ions is regul Continue reading >>

Perfecting Your Acid-base Balancing Act

Perfecting Your Acid-base Balancing Act

When it comes to acids and bases, the difference between life and death is balance. The body’s acid-base balance depends on some delicately balanced chemical reactions. The hydrogen ion (H+) affects pH, and pH regulation influences the speed of cellular reactions, cell function, cell permeability, and the very integrity of cell structure. When an imbalance develops, you can detect it quickly by knowing how to assess your patient and interpret arterial blood gas (ABG) values. And you can restore the balance by targeting your interventions to the specific acid-base disorder you find. Basics of acid-base balance Before assessing a patient’s acid-base balance, you need to understand how the H+ affects acids, bases, and pH. An acid is a substance that can donate H+ to a base. Examples include hydrochloric acid, nitric acid, ammonium ion, lactic acid, acetic acid, and carbonic acid (H2CO3). A base is a substance that can accept or bind H+. Examples include ammonia, lactate, acetate, and bicarbonate (HCO3-). pH reflects the overall H+ concentration in body fluids. The higher the number of H+ in the blood, the lower the pH; and the lower the number of H+, the higher the pH. A solution containing more base than acid has fewer H+ and a higher pH. A solution containing more acid than base has more H+ and a lower pH. The pH of water (H2O), 7.4, is considered neutral. The pH of blood is slightly alkaline and has a normal range of 7.35 to 7.45. For normal enzyme and cell function and normal metabolism, the blood’s pH must remain in this narrow range. If the blood is acidic, the force of cardiac contractions diminishes. If the blood is alkaline, neuromuscular function becomes impaired. A blood pH below 6.8 or above 7.8 is usually fatal. pH also reflects the balance between the p Continue reading >>

Alkalosis

Alkalosis

Your blood is made up of acids and bases. The amount of acids and bases in your blood can be measured on a pH scale. It’s important to maintain the correct balance between acids and bases. Even a slight change can cause health problems. Normally, your blood should have a slightly higher amount of bases than acids. Alkalosis occurs when your body has too many bases. It can occur due to decreased blood levels of carbon dioxide, which is an acid. It can also occur due to increased blood levels of bicarbonate, which is a base. This condition may also be related to other underlying health issues such as low potassium, or hypokalemia. The earlier it’s detected and treated, the better the outcome is. Acid-base balance » There are five main types of alkalosis. Respiratory alkalosis Respiratory alkalosis occurs when there isn’t enough carbon dioxide in your bloodstream. It’s often caused by: hyperventilation, which commonly occurs with anxiety high fever lack of oxygen salicylate poisoning being in high altitudes Metabolic alkalosis Metabolic alkalosis develops when your body loses too much acid or gains too much base. This can be attributed to: excess vomiting, which causes electrolyte loss overuse of diuretics a large loss of potassium or sodium in a short amount of time antacids accidental ingestion of bicarbonate, which can be found in baking soda laxatives alcohol abuse Hypochloremic alkalosis Hypochloremic alkalosis occurs when there’s a significant decline of chloride in your body. This can be due to prolonged vomiting or sweating. Chloride is an important chemical needed to maintain balance in bodily fluids, and it’s an essential part of your body’s digestive fluids. Hypokalemic alkalosis Hypokalemic alkalosis occurs when your body lacks the normal amount Continue reading >>

Abg’s—it’s All In The Family

Abg’s—it’s All In The Family

By Cyndi Cramer, BA, RN, OCN, PCRN RealNurseEd.com 3.0 Contact Hour Self Learning Module Objectives: Identify the components of the ABG and their normal ranges Interpret ABG values and determine the acid base abnormality given Identify the major causes of acid base abnormalities Describe symptoms associated with acid base abnormalities Describe interventions to correct acid base abnormalities Identify the acceptable O2 level per ABG and Pulse Oximetry Identify four causes of low PaO2 The Respiratory System (Acid); CO2 is a volatile acid If you increase your respiratory rate (hyperventilation) you "blow off" CO2 (acid) therefore decreasing your CO2 acid—giving you ALKLAOSIS If you decrease your respiratory rate (hypoventilation) you retain CO2 (acid) therefore increasing your CO2 (acid)—giving you ACIDOSIS The Renal System (Base); the kidneys rid the body of the nonvolatile acids H+ (hydrogen ions) and maintain a constant bicarb (HCO3). Bicarbonate is the body’s base You have Acidosis when you have excess H+ and decreased HCO3- causing a decrease in pH. The Kidneys try to adjust for this by excreting H+ and retaining HCO3- base. The Respiratory System will try to compensate by increasing ventilation to blow off CO2 (acid) and therefore decrease the Acidosis. You have Alkalosis when H+ decreases and you have excess (or increased) HCO3- base. The kidneys excrete HCO3- (base) and retain H+ to compensate. The respiratory system tries to compensate with hypoventilation to retain CO2 (acid) To decrease the alkalosis Compensation The respiratory system can effect a change in 15-30 minutes The renal system takes several hours to days to have an effect. RESPIRATORY ACIDOSIS: pH < 7.35 (Normal: 7.35 - 7.45) CO2 > 45 (Normal: 35 – 45) 1. Causes: Hypoventilation a. Depressio Continue reading >>

Simple Method Of Acid Base Balance Interpretation

Simple Method Of Acid Base Balance Interpretation

A FOUR STEP METHOD FOR INTERPRETATION OF ABGS Usefulness This method is simple, easy and can be used for the majority of ABGs. It only addresses acid-base balance and considers just 3 values. pH, PaCO2 HCO3- Step 1. Use pH to determine Acidosis or Alkalosis. ph < 7.35 7.35-7.45 > 7.45 Acidosis Normal or Compensated Alkalosis Step 2. Use PaCO2 to determine respiratory effect. PaCO2 < 35 35 -45 > 45 Tends toward alkalosis Causes high pH Neutralizes low pH Normal or Compensated Tends toward acidosis Causes low pH Neutralizes high pH Step 3. Assume metabolic cause when respiratory is ruled out. You'll be right most of the time if you remember this simple table: High pH Low pH Alkalosis Acidosis High PaCO2 Low PaCO2 High PaCO2 Low PaCO2 Metabolic Respiratory Respiratory Metabolic If PaCO2 is abnormal and pH is normal, it indicates compensation. pH > 7.4 would be a compensated alkalosis. pH < 7.4 would be a compensated acidosis. These steps will make more sense if we apply them to actual ABG values. Click here to interpret some ABG values using these steps. You may want to refer back to these steps (click on "linked" steps or use "BACK" button on your browser) or print out this page for reference. Step 4. Use HC03 to verify metabolic effect Normal HCO3- is 22-26 Please note: Remember, the first three steps apply to the majority of cases, but do not take into account: the possibility of complete compensation, but those cases are usually less serious, and instances of combined respiratory and metabolic imbalance, but those cases are pretty rare. "Combined" disturbance means HCO3- alters the pH in the same direction as the PaCO2. High PaCO2 and low HCO3- (acidosis) or Low PaCO2 and high HCO3- (alkalosis). Continue reading >>

Abg Interpretation

Abg Interpretation

Arterial blood gas (ABG) interpretation is something many medical students find difficult to grasp (we’ve been there). We’ve created this guide, which aims to provide a structured approach to ABG interpretation whilst also increasing your understanding of each results relevance. The real value of an ABG comes from its ability to provide a near immediate reflection of the physiology of your patient, allowing you to recognise and treat pathology more rapidly. To see how to perform an arterial blood gas check out our guide here. If you want to put your ABG interpretation skills to the test, check out our ABG quiz here. Normal ranges pH: 7.35 – 7.45 PaCO2: 4.7-6.0 kPa PaO2: 11-13 kPa HCO3-: 22-26 mEg/L Base excess: -2 to +2 mmol/L Patient’s clinical condition Before getting stuck into the details of the analysis, it’s important to look at the patient’s current clinical status, as this provides essential context to the ABG result. Below are a few examples to demonstrate how important context is when interpreting an ABG. A normal PaO2 in a patient on high flow oxygen – this is abnormal as you would expect the patient to have a PaO2 well above the normal range with this level of oxygen therapy A normal PaCO2 in a hypoxic asthmatic patient – a sign they are tiring and need ITU intervention A very low PaO2 in a patient who looks completely well, is not short of breath and has normal O2 saturations – likely a venous sample Oxygenation (PaO2) Your first question when looking at the ABG should be “Is this patient hypoxic?” (because this will kill them long before anything else does). PaO2 should be >10 kPa on air in a healthy patient If the patient is receiving oxygen therapy their PaO2 should be approximately 10kPa less than the % inspired concentration / FiO Continue reading >>

Acidosis Vs. Alkalosis

Acidosis Vs. Alkalosis

In this lesson, we're going to learn about acidosis and alkalosis. We'll take a look at the causes, signs, and symptoms that are associated with each condition. Balanced Blood We are constantly having to find balance in our lives. From balancing work and play time to saving and spending money, sleep and awake time. Well, ideally at least. We do this because we know that we function best when we're balanced. There are many similar balances that are going on inside of our bodies. An important balance that must be maintained to allow us to function properly is the balance between acids and bases in our bodies. When these are balanced, the acids pair up with the bases, and our blood is close to neutral. If too much acid is in the blood, then we experience acidosis. If too much base is in the blood, we experience alkalosis. Acidosis and alkalosis are caused by different conditions in our bodies, and they can cause different problems to occur. Acidosis Acidosis results from the build-up of acids in the blood or from the loss of base in the blood. Acids are put into our bloodstream through two systems in the body: the digestive system and the respiratory system. Acidosis that occurs from the digestive system is referred to as metabolic acidosis. In this instance, acids accumulate in the blood due to consumption of acidic foods or foods that are broken down into acids, excess acids being produced during metabolism, kidneys not properly removing acid from the bloodstream during filtration, or production of acid by the body due to other medical conditions, such as diabetes. The other possible way to develop acidosis is by the malfunctioning of the respiratory system, which we refer to as respiratory acidosis. This can happen if breathing is extremely slow or shallow, the lungs do Continue reading >>

Interpretation Of Arterial Blood Gas

Interpretation Of Arterial Blood Gas

Go to: Introduction Arterial blood gas (ABG) analysis is an essential part of diagnosing and managing a patient’s oxygenation status and acid–base balance. The usefulness of this diagnostic tool is dependent on being able to correctly interpret the results. Disorders of acid–base balance can create complications in many disease states, and occasionally the abnormality may be so severe so as to become a life-threatening risk factor. A thorough understanding of acid–base balance is mandatory for any physician, and intensivist, and the anesthesiologist is no exception. The three widely used approaches to acid–base physiology are the HCO3- (in the context of pCO2), standard base excess (SBE), and strong ion difference (SID). It has been more than 20 years since the Stewart’s concept of SID was introduced, which is defined as the absolute difference between completely dissociated anions and cations. According to the principle of electrical neutrality, this difference is balanced by the weak acids and CO2. The SID is defined in terms of weak acids and CO2 subsequently has been re-designated as effective SID (SIDe) which is identical to “buffer base.” Similarly, Stewart’s original term for total weak acid concentration (ATOT) is now defined as the dissociated (A-) plus undissociated (AH) weak acid forms. This is familiarly known as anion gap (AG), when normal concentration is actually caused by A-. Thus all the three methods yield virtually identical results when they are used to quantify acid–base status of a given blood sample.[1] Continue reading >>

Acid-base Imbalance - An Overview | Sciencedirect Topics

Acid-base Imbalance - An Overview | Sciencedirect Topics

Gary P. Carlson, Michael Bruss, in Clinical Biochemistry of Domestic Animals (Sixth Edition) , 2008 Mixed acid-base disorders occur when several primary acid-base imbalances coexist (de Morais, 1992a). Metabolic acidosis and alkalosis can coexist and either or sometimes both of these metabolic abnormalities may occur with either respiratory acidosis or alkalosis (Nairns and Emmett, 1980; Wilson and Green, 1985). Evaluation of mixed acid-base abnormalities requires an understanding of the anion gap, the relationship between the change in serum sodium and chloride concentration, and the limits of compensation for the primary acid-base imbalances (Saxton and Seldin, 1986; Wilson and Green, 1985). Clinical findings and history are also necessary to define the factors that may contribute to the development of mixed acid-base disorders. The following are important considerations in evaluating possible mixed acid-base disorders: Compensating responses to primary acid-base disturbances do not result in overcompensation. With the possible exception of chronic respiratory acidosis, compensating responses for primary acid-base disturbances rarely correct pH to normal. In patients with acid-base imbalances, a normal pH indicates a mixed acid-base disturbance. A change in pH in the opposite direction to that predicted for a known primary disorder indicates a mixed disturbance. With primary acid-base disturbances, bicarbonate and pCO2 always deviate in the same direction. If these parameters deviate in opposite directions, a mixed abnormality exists. Although mixed acid-base abnormalities undoubtedly occur in animals and have been documented in the veterinary literature, they are often overlooked (Wilson and Green, 1985). An appreciation of the potential for the development of mixed Continue reading >>

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

Your patient has a ph of 6.9 Is he acidic or alkalotic? Your patient has a ph of 7.4 Is he acidic or alkalotic? Your patient has a ph of 7.7 Is he acidic or alkalotic? Your patient has a ph of 7.25 Is he acidic or alkalotic? Your patient has a ph of 7.43 Is he acidic or alkalotic? Your patient has a ph of 8.0 Is he acidic or alkalotic? 1. acidic 2. normal 3. Alkaline 4. Acidic 5. Normal 6. Alkaline You take in oxygen by inhaling, your body turns oxygen into carbon dioxide, you exhale and remove the carbon dioxide from your body. Carbon dioxide is "respiratory acid."When you're not breathing adequately, you are not getting rid of this "respiratory acid" and it builds up in the tissues. The extra CO2 molecules combine with water in your body to form carbonic acid and makes your pH go up. This is bad. We can measure the amount of respiratory acid in the arterial blood using blood gases. They measure the amount of each gas in your blood. We measure the pH, the amount of carbon dioxide (PaCO2) and the amount of oxygen in the blood (PaO2). PaCO2 is the partial pressure of carbon dioxide. We can measure it to see how much respiratory acid (CO2) there is in the blood. We use arterial blood gas tests to check it. How much respiratory acid (CO2) should there be? The normal value is 35-45 mmHg (mmHg just means millimeters of mercury, its a measurement of pressure.) The (a) in PaCO2 just stands for arterial. If you measured venous blood gasses, the levels are different and PvCO2 is used. If CO2 is HIGH, it means there is a buildup of respiratory acids because he's not breathing enough CO2 away. If your pH is acidic, and your CO2 is HIGH, its considered respiratory acidosis. If CO2 is LOW, it means there are not enough respiratory acids because he's probably hyperventilating too mu Continue reading >>

8-step Guide To Abg Analysis: Tic-tac-toe Method

8-step Guide To Abg Analysis: Tic-tac-toe Method

An arterial blood gas (ABG) is a blood test that measures the acidity (pH) and the levels of oxygen and carbon dioxide in the blood . Blood for an ABG test is taken from an artery whereas most other blood tests are done on a sample of blood taken from a vein. This test is done to monitor several conditions that can cause serious health complications especially to critically ill individuals. Every day, a lot of nursing and medical students assigned in acute areas encounter ABG results, which they may not necessarily be able to interpret with its knotty aspect. They struggle over the interpretation of its measurements, but they are not especially complicated nor difficult if you understand the basic physiology and have a step by step process to analyze and interpret them. There may be various tips and strategies to guide you, from mnemonics, to charts, to lectures, to practice, but this article will tell you how to interpret ABGs in the easiest possible way. And once you have finished reading this, youll be doing actual ABG analysis in the NCLEX with fun and excitement! Here are the steps: Know the normal and abnormal ABG values when you review the lab reports. Theyre fairly easy to remember: for pH, the normal value is 7.35 to 7.45; 35-45 for paCO2; and 22-26 for HCO3. Remember also this diagram and note that paCO2 is intentionallyinverted for the purpose of this method. 2. Determine if pH is under acidosis or alkalosis Next thing to do is to determine the acidity or alkalinity of the blood through the value of pH. The pH level of a healthy human should be between 7.35 to 7.45. The human body is constantly striving to keep pH in balance. 3. Determine if acid-base is respiratory or metabolic Next thing you need to determine is whether the acid base is Respiratory or Meta Continue reading >>

Tic Tac Toe Method Arterial Blood Gas (abg) Interpretation For Nurses & Nursing Students

Tic Tac Toe Method Arterial Blood Gas (abg) Interpretation For Nurses & Nursing Students

Tic Tac Toe Method Arterial Blood Gas (ABG) Interpretation for Nurses & Nursing Students Didnt you love ABG problems in nursing school? Well, I didnt because I found them so confusing, and I could never remember if the value was acidotic or alkalosis. But then I found the TIC TAC TOE Method for ABGs and actually found solving ABG problems to be fun (like tic tac toe haha). Below I show you how to solve ABG problems using the Tic Tac Toe method. After you read and watch the video on using the Tic Tac Toe Method, dont forget to that the ABGs practice quiz to test your knowledge. Respiratory Acidosis vs Respiratory Alkalosis Why Learn How to Interpret Arterial Blood Gases asNurse? Being able to interpret Arterial Blood Gases (ABGs) as a nurse is very important. Many new nurses feel they are not comfortable with interpreting Arterial Blood Gases after they graduate. Some of these nurses feel they will never use it in their job and feel it is the respiratory therapists job or find it too confusing to understand. However, as the nurse taking care of the patient with abnormal Arterial Blood Gases (ABGs) it is your responsibility to know what to report to the doctor and how to properly oxygenate your patient based on their ABGs. For example, patients with COPD are known as CO2 retainers and their pCO2 levels will be higher than someone who does not have COPD. However, patients with COPD can experience abnormally highpCO2 levelswhich can cause confusion, dizziness, unconsciousness, increased heart rate/blood pressure, etc. So it is very importantthenurse knows how to interpret ABGS. Luckily there is a super easy way to help you interpret ABGs and I want to share it with you below. Easy Way on How to Interpret Arterial Blood Gases ABGs with Tic Tac Toe First, we need to lay the Continue reading >>

More in ketosis