
Understanding The Presentation Of Diabetic Ketoacidosis
Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Systemic Causes Of Abdominal Pain
a Department of Emergency Medicine, Thomas Jefferson University Hospital, 1020 Sansom Street, Thompson Building 239, Philadelphia, PA 19107, USA b Division of Emergency Ultrasonography, Department of Emergency Medicine, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA Abstract A variety of systemic and extra-abdominal diseases can cause symptoms within the abdominal cavity. Systemic and extra-abdominal diseases may include abdominal symptoms caused by several mechanisms. This article discusses the most important and common of these causes, namely the metabolic/endocrine causes, hematologic causes, inflammatory causes, infectious causes, functional causes, and the neurogenic causes. Keywords A variety of systemic and extra-abdominal diseases can cause symptoms within the abdominal cavity (Box 1). This article discusses the most important and common of these diseases. Systemic and extra-abdominal diseases may include abdominal symptoms caused by several mechanisms listed in Table 1. Mechanisms include direct pathologic effects on intra-abdominal organs (eg, gallstone formation in sickle cell disease); conversely, systemic illnesses (eg, congestive heart failure, diabetic ketoacidosis [DKA], or addisonian crisis) may themselves be precipitated by diseases in the abdomen. Some systemic illnesses have a direct (eg, constipation in hypercalcemia) or indirect (eg, nausea and vomiting in diabetic or alcoholic ketoacidosis [AKA]) effect on the functioning of the gastrointestinal (GI) tract. Abdominal symptoms may be caused by disease in contiguous organs outside the abdomen (eg, diaphragmatic irritation from disease of adjacent structures in the lung and mediastinum).1–4 Finally, symptoms may be referred to the abdomen from extra-abdom Continue reading >>

Abdominal Pain In Patients With Hyperglycemic Crises.
Abstract BACKGROUND: The aim of the study was to evaluate the incidence and prognosis of abdominal pain in patients with diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic state (HHS). Abdominal pain, sometimes mimicking an acute abdomen, is a frequent manifestation in patients with DKA. The prevalence and clinical significance of gastrointestinal symptoms including abdominal pain in HHS have not been prospectively evaluated. MATERIALS AND METHODS: This is a prospectively collected evaluation of 200 consecutive patients with hyperglycemic crises admitted to a large inner-city teaching hospital in Atlanta, GA.We analyzed the admission clinical characteristics, laboratory studies, and hospital course of 189 consecutive episodes of DKA and 11 cases of HHS during a 13-month period starting in October 1995. RESULTS: Abdominal pain occurred in 86 of 189 patients with DKA (46%). In 30 patients, the cause of abdominal pain was considered to be secondary to the precipitating cause of metabolic decompensation. Five of them required surgical intervention including 1 patient with Fournier's necrotizing fasciitis, 1 with cholecystitis, 1 with acute appendicitis, and 2 patients with perineal abscess. The presence of abdominal pain was not related to the severity of hyperglycemia or dehydration; however, a strong association was observed between abdominal pain and metabolic acidosis. In DKA patients with abdominal pain, the mean serum bicarbonate (9 +/- 1 mmol/L) and blood pH (7.12 +/- 0.02) were lower than in patients without pain (15 +/- 1 mmol/L and 7.24 +/- 0.09, respectively, both P <.001). Abdominal pain was present in 86% of patients with serum bicarbonate less than 5 mmol/L, in 66% of patients with levels of 5 to less than 10 mmol/L, in 36% of patients with Continue reading >>

What Is The Origin/mechanism Of Abdominal Pain In Diabetic Ketoacidosis?
Other than all papers I could find citing the depth of the keto-acidosis (and not the height of the blood glucose levels) correlating with abdominal pain, nothing else to explain how these two are linked. Decades ago, I was taught that because of the keto-acidosis causing a shift of intracellular potassium (having been exchanged for H+ protons of which in keto-acidosis there were too many of in the extracellular fluid) to the extracellular, so also the blood compartment, resulting in hyperkalemia, paralyzing the stomach, which could become grossly dilated - that’s why we often put in a nasogastric drainage tube to prevent vomiting and aspiration - and thus cause “stomach pain”. This stomach pain in the majority of cases indeed went away after the keto-acidosis was treated and serum electrolyte levels normalized. In one patient it didn’t, she remained very, very metabolically acidotic, while blood glucose levels normalized, later we found her to have a massive and fatal intestinal infarction as the underlying reason for her keto-acidosis….. Continue reading >>

Diabetic Ketoacidosis
Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Diabetic Ketoacidosis
What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

Diabetic Ketoacidosis
Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Diabetic Ketoacidosis - Symptoms
A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Diabetic Ketoacidosis (dka)
Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis
Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Diabetic Ketoacidosis
Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

<< Guidelines For The Ed Management Of Pediatric Diabetic Ketoacidosis (dka)
Epidemiology, Etiology, And Pathophysiology Epidemiology and Etiology "Type 1" and "Type 2" Diabetes in Children Type 1 diabetes is the most common type of diabetes seen in children today. The primary metabolic derangement in type 1 diabetes is an absolute insulin deficiency. These patients will have a life-long dependence on insulin injections. The overall incidence of insulin-dependent diabetes is about 15 cases per 100,000 people per year (about 50,000 are diagnosed with type 1 diabetes each year). An estimated 3 children of every 1000 will develop insulin-dependent diabetes by the age of 20. Type 1 diabetes is primarily a disease of Caucasians. The worldwide incidence is highest in Finland and Sardinia and lowest in the Asian and black populations. Type 1 diabetes is more frequently diagnosed in the winter months (the reason for this is not known.) Interestingly, twins affected by type 1 diabetes are often discordant in the development of the disease.13 About 95% of cases of type 1 diabetes are the result of a genetic defect of the immune system, exacerbated by environmental factors.13 The autoimmune destruction of the beta cells of the pancreas results in the inability to produce insulin. Inheritance of type 1 diabetes is carried in genes of the major histocompatibility complex, the human leukocyte antigen (HLA) system. Eventually, this research may lead to a vaccine using the insulin B chain 8-24 peptides to actually prevent type 1 diabetes.13 It is currently thought that islet cells damaged by a virus produce a membrane antigen that may stimulate a response by T killer cells of the immune system in the genetically susceptible patient. The T killer cells misidentify the beta cell as foreign and destroy it. As the beta cells in the pancreas are destroyed, the remai Continue reading >>

Diabetic Ketoacidosis
Author: Osama Hamdy, MD, PhD; Chief Editor: Romesh Khardori, MD, PhD, FACP more... Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Malaise, generalized weakness, and fatigability Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia Rapid weight loss in patients newly diagnosed with type 1 diabetes History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: Glaser NS, Marcin JP, Wootton-Gorges SL, et al. Correlation of clinical and biochemical findings with diabetic ketoacidosis-related cerebral edema in children using magnetic resonance diffusion-weighted imaging. J Pediatr. 2008 Jun 25. [Medline] . Umpierrez GE, Jones S, Smiley D, et al. Insulin analogs versus human insulin in the treatment of patients with diabetic ketoacidosis: a randomized controlled trial. Diabetes Care. 2009 Jul. 32(7):1164-9. [Medline] . [Full Text] . Herrington WG, Nye HJ, Hammersley MS, Watkinson PJ. Are arterial and venous samples clinically equivalent for the estimation Continue reading >>

Acute Complications Of Diabetes - Diabetic Ketoacidosis
- [Voiceover] Oftentimes we think of diabetes mellitus as a chronic disease that causes serious complications over a long period of time if it's not treated properly. However, the acute complications of diabetes mellitus are often the most serious, and can be potentially even life threatening. Let's discuss one of the acute complications of diabetes, known as diabetic ketoacidosis, or DKA for short, which can occur in individuals with type 1 diabetes. Now recall that type 1 diabetes is an autoimmune disorder. And as such, there's an autoimmune destruction of the beta cells in the pancreas, which prevents the pancreas from producing and secreting insulin. Therefore, there is an absolute insulin deficiency in type 1 diabetes. But what exactly does this mean for the body? To get a better understanding, let's think about insulin requirements as a balancing act with energy needs. Now the goal here is to keep the balance in balance. As the energy requirements of the body go up, insulin is needed to take the glucose out of the blood and store it throughout the body. Normally in individuals without type 1 diabetes, the pancreas is able to produce enough insulin to keep up with any amount of energy requirement. But how does this change is someone has type 1 diabetes? Well since their pancreas cannot produces as much insulin, they have an absolute insulin deficiency. Now for day-to-day activities, this may not actually cause any problems, because the small amount of insulin that is produced is able to compensate and keep the balance in balance. However, over time, as type 1 diabetes worsens, and less insulin is able to be produced, then the balance becomes slightly unequal. And this results in the sub-acute or mild symptoms of type 1 diabetes such as fatigue, because the body isn Continue reading >>

Diabetic Ketoacidosis
Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>