diabetestalk.net

What Would Happen To Glucose Homeostasis Of The Pancreas Could No Longer Produce Glucagon

Blood Sugar Regulation

Blood Sugar Regulation

Most cells in the human body use the sugar called glucose as their major source of energy. Glucose molecules are broken down within cells in order to produce adenosine triphosphate (ATP) molecules, energy-rich molecules that power numerous cellular processes. Glucose molecules are delivered to cells by the circulating blood and therefore, to ensure a constant supply of glucose to cells, it is essential that blood glucose levels be maintained at relatively constant levels. Level constancy is accomplished primarily through negative feedback systems, which ensure that blood glucose concentration is maintained within the normal range of 70 to 110 milligrams (0.0024 to 0.0038 ounces) of glucose per deciliter (approximately one-fifth of a pint) of blood. Negative feedback systems are processes that sense changes in the body and activate mechanisms that reverse the changes in order to restore conditions to their normal levels. Negative feedback systems are critically important in homeostasis, the maintenance of relatively constant internal conditions. Disruptions in homeostasis lead to potentially life-threatening situations. The maintenance of relatively constant blood glucose levels is essential for the health of cells and thus the health of the entire body. Major factors that can increase blood glucose levels include glucose absorption by the small intestine (after ingesting a meal) and the production of new glucose molecules by liver cells. Major factors that can decrease blood glucose levels include the transport of glucose into cells (for use as a source of energy or to be stored for future use) and the loss of glucose in urine (an abnormal event that occurs in diabetes mellitus). Insulin and Glucagon In a healthy person, blood glucose levels are restored to normal level Continue reading >>

Glucagon

Glucagon

This article is about the natural hormone. For the medication, see Glucagon (medication). Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It works to raise the concentration of glucose and fat in the bloodstream, and is considered to be the main catabolic hormone of the body [3]. It is also used as a medication to treat a number of health conditions. Its effect is opposite to that of insulin, which lowers the extracellular glucose.[4] The pancreas releases glucagon when the concentration of glucose in the bloodstream falls too low. Glucagon causes the liver to convert stored glycogen into glucose, which is released into the bloodstream.[5] High blood-glucose levels, on the other hand, stimulate the release of insulin. Insulin allows glucose to be taken up and used by insulin-dependent tissues. Thus, glucagon and insulin are part of a feedback system that keeps blood glucose levels stable. Glucagon increases energy expenditure and is elevated under conditions of stress.[6] Glucagon belongs to the secritin family of hormones. Function[edit] Glucagon generally elevates the concentration of glucose in the blood by promoting gluconeogenesis and glycogenolysis [7]. Glucagon also decreases fatty acid synthesis in adipose tissue and the liver, as well as promoting lipolysis in these tissues, which causes them to release fatty acids into circulation where they can be catabolised to generate energy in tissues such as skeletal muscle when required [8]. Glucose is stored in the liver in the form of the polysaccharide glycogen, which is a glucan (a polymer made up of glucose molecules). Liver cells (hepatocytes) have glucagon receptors. When glucagon binds to the glucagon receptors, the liver cells convert the glycogen into individual glucose molecules and re Continue reading >>

Homeostasis

Homeostasis

Constancy in a system, such as the human body, maintained by sensing, feedback, and control mechanisms. A familiar example of a system in homeostasis is a house with a thermostat. When the temperature in the house dips too far below the desired temperature, the thermostat senses this and sends a signal to the furnace to turn on. When the target temperature level is reached, the thermostat senses this, too, and signals the furnace to shut off. The human body has a number of functions that are controlled by homeostatic mechanisms, including heartbeat, blood pressure, body temperature, electrolyte balance, respiration, and blood glucose regulation. In a person who doesn’t have diabetes, the body has a number of mechanisms in place to keep blood glucose in a fairly limited range. The pancreas reacts to low blood glucose levels by decreasing its insulin secretion. If the blood glucose level drops lower, the alpha cells of the pancreas release more of a hormone called glucagon, which stimulates the liver to manufacture more glucose and release it into the bloodstream. At the same time, the adrenal glands secrete more of a hormone called epinephrine. In addition to stimulating the manufacture and secretion of glucose by the liver, epinephrine keeps the body’s tissues from using as much glucose. Epinephrine is thought to cause some of the physical symptoms of hypoglycemia — such as sweating, trembling, and heart palpitations. Other counterregulatory hormones, including growth hormone and cortisol, also help raise blood glucose levels by increasing glucose production and limiting glucose utilization. A person with Type 1 diabetes has lost one or more of these defense mechanisms. Since his pancreas no longer makes insulin and he must inject it, his pancreas cannot control t Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

Homeostasis Of Glucose Levels: Hormonal Control And Diabetes

Homeostasis Of Glucose Levels: Hormonal Control And Diabetes

Homeostasis According to the Centers for Disease Control and Prevention, there are almost 26 million people in the United States alone that have diabetes, which is 8.3% of the total U.S. population. With so many Americans suffering from diabetes, how do we treat all of them? Do all of these people now need insulin shots, or are there other ways to treat, or prevent, diabetes? In order to answer these questions, we must first understand the fundamentals of blood glucose regulation. As you may remember, homeostasis is the maintenance of a stable internal environment within an organism, and maintaining a stable internal environment in a human means having to carefully regulate many parameters, including glucose levels in the blood. There are two major ways that signals are sent throughout the body. The first is through nerves of the nervous system. Signals are sent as nerve impulses that travel through nerve cells, called neurons. These impulses are sent to other neurons, or specific target cells at a specific location of the body that the neuron extends to. Most of the signals that the human body uses to regulate body temperature are sent through the nervous system. The second way that signals can be sent throughout the body is through the circulatory system. These signals are transmitted by specific molecules called hormones, which are signaling molecules that travel through the circulatory system. In this lesson, we'll take a look at how the human body maintains blood glucose levels through the use of hormone signaling. Homeostasis of Blood Glucose Levels Glucose is the main source of fuel for the cells in our bodies, but it's too big to simply diffuse into the cells by itself. Instead, it needs to be transported into the cells. Insulin is a hormone produced by the panc Continue reading >>

Insulin Lowers Blood Glucose By Increasing Glucose Uptake In Muscle And Adipose Tissue And By Promoting Glycolysis And Glycogenesis In Liver And Muscle.

Insulin Lowers Blood Glucose By Increasing Glucose Uptake In Muscle And Adipose Tissue And By Promoting Glycolysis And Glycogenesis In Liver And Muscle.

Glucose Homeostasis and Starvation Glucose Homeostasis: the balance of insulin and glucagon to maintain blood glucose. Insulin: secreted by the pancreas in response to elevated blood glucose following a meal. Insulin:Glucagon Ratio: everything that happens to glucose, amino acids and fat in the well fed state depends upon a high insulin to glucagon ratio. Glucagon: a fall in blood glucose increases the release of glucagon from the pancreas to promote glucose production. Glucose Tolerance Test: evaluates how quickly an individual can restore their blood glucose to normal following ingestion of a large amount of glucose, i.e. measures an individuals ability to maintain glucose homeostasis Diabetic: can not produce or respond to insulin so thus has a very low glucose tolerance Glucose, Protein and Fat Pathways: Obese Individuals: even with prolonged medically supervised fasting have plasma glucose levels that remain relatively constant even after three months. Glucose / Fatty Acid / Ketone Body Cycle: "explains the reciprocal relationship between the oxidation of glucose versus fatty acids or ketone bodies" Principal Hormone Effects on the Glucose-Fatty Acid Cycle: Under conditions of CHO stress (lack of CHO's): There is depletion of liver glycogen stores Fatty acids are mobilized from adipose and their rate of oxidation by muscle is increased, which in turn decreases glucose utilization. Glucagon signals fat mobilization. Under conditions of plentiful CHO's: Fatty acid release by adipose is reduced by insulin, thus decreasing fatty acid oxidation. Glucose use by the muscles increases. These responses stabilize blood glucose. The regulatory effect of fatty acid oxidation on glucose utilization is logical: 1) the small reserves of CHO in the body 2) the obligatory requireme Continue reading >>

Central Control Of Glucose Homeostasis: The Brain Endocrine Pancreas Axis - Em|consulte

Central Control Of Glucose Homeostasis: The Brain Endocrine Pancreas Axis - Em|consulte

Central control of glucose homeostasis: the brain endocrine pancreas axis Contrle central de lhomostasie glucidique : laxe cerveau-pancras endocrine Center for Integrative Genomics, University of Lausanne, Genopode Building, 1215 Lausanne, Switzerland A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes. The full text of this article is available in PDF format. Les cellules beta pancratiques, en scrtant linsuline, jouent un rle cl dans le contrle de lhomostasie glucidique. Cette scrtion est rgule trs finement pour que laction hypoglycmiante de linsuline soit prcisment adapte aux augmentations de glycmie. En plus de cette rgulation aigue, la rgulation du nombre total des cellules bta, ou masse cellulaire bta, est un aspect important du maintien de la capacit du pancras endocrine de scrter linsuline au cours de modifications physiologiques, comme la grossesse ou lobsit, associes au dveloppement dune insulinorsistance des tissus priphriques. Cette plasticit de la masse cellulaire bta est maintenant co Continue reading >>

You And Your Hormones

You And Your Hormones

What is glucagon? Glucagon is a hormone that is involved in controlling blood sugar (glucose) levels. It is secreted into the bloodstream by the alpha cells, found in the islets of langerhans, in the pancreas. The glucagon-secreting alpha cells surround a core of insulin-secreting beta cells, which reflects the close relationship between the two hormones. Glucagon’s role in the body is to prevent blood glucose levels dropping too low. To do this, it acts on the liver in several ways: It stimulates the conversion of stored glycogen (stored in the liver) to glucose, which can be released into the bloodstream. This process is called glycogenolysis. It promotes the production of glucose from amino acid molecules. This process is called gluconeogenesis. It reduces glucose consumption by the liver so that as much glucose as possible can be secreted into the bloodstream to maintain blood glucose levels. Glucagon also acts on adipose tissue to stimulate the breakdown of fat stores into the bloodstream. How is glucagon controlled? Glucagon works along with the hormone insulin to control blood sugar levels and keep them within set levels. Glucagon is released to stop blood sugar levels dropping too low, while insulin is released to stop blood sugar levels rising too high. Release of glucagon is stimulated by low blood glucose (hypoglycaemia), protein-rich meals and adrenaline (another important hormone for combating low glucose). Release of glucagon is prevented by raised blood glucose and carbohydrate in meals, detected by cells in the pancreas. In the longer-term, glucagon is crucial to the body’s response to lack of food. For example, it encourages the use of stored fat for energy in order to preserve the limited supply of glucose. What happens if I have too much glucagon? Continue reading >>

Insulin, Glucagon & Glucose Homeostasis: Diabetes Mellitus

Insulin, Glucagon & Glucose Homeostasis: Diabetes Mellitus

Sort *HbA1c* In the blood stream are the red blood cells, which are made of a molecule, haemoglobin. Glucose sticks to the haemoglobin to make a 'glycosylated haemoglobin' molecule, called haemoglobin A1C or HbA1C. The more glucose in the blood, the more haemoglobin A1C or HbA1C will be present in the blood. Interaction of hormones: what happens if there are receptors for factors with opposing effects? A) Strength of cases B) Balancing act --insulin decreases blood glucose --glucagon and adrenaline increase it C) Permissive effects - i.e. estrogen on progesterone receptor Describe water soluble hormones. GI tract polypeptide hormones that facilitate insulin secretion: A) Produced in GI tract and Secreted in blood B) Can be stored in the cell in vesicles C) Can be released in response to a calcium spikes D) Doesn't really need carrier proteins (but may have) E) Will work via a cell surface receptor F) Binding will initiate internalization and degradation of that factor G) Initiates some cell signaling event Examples: Insulin Endorphins - polypeptides in CNS and other sites --Opiate like actions --Produce a large amount If you are in extreme pain *What is the role of Cyclic AMP (cAMP)?* Critical for regulating secretion in secretory cells --Elevating cAMP increases secretion of insulin (fasting state) --Decreasing cAMP lowers secretion (fasting state) Often linked to g-protein coupled cells: Gs, Gi, and Gq (see slide 13 for the adenylyl cyclase system) Describe the secretion of Calcium. A) Movement of vesicles inside secretory cells B) Hormones that stimulate release of other hormones C) Control of flux from calcium outside of cell, or release of stored calcium (hormonal - endoplasmic reticulum. Mitochondria stores ca but not under hormonal control) *Identify active short Continue reading >>

What Is Glucagon?

What Is Glucagon?

Tweet The effects of glucagon are the opposite of the effects induced by insulin. The two hormones need to work in partnership with each other to keep blood glucose levels balanced. Glucagon is a hormone that is produced by alpha cells in a part of the pancreas known as the islets of Langerhans. The role of glucagon in the body Glucagon plays an active role in allowing the body to regulate the utilisation of glucose and fats. Glucagon is released in response to low blood glucose levels and to events whereby the body needs additional glucose, such as in response to vigorous exercise. When glucagon is released it can perform the following tasks: Stimulating the liver to break down glycogen to be released into the blood as glucose Activating gluconeogenesis, the conversion of amino acids into glucose Breaking down stored fat (triglycerides) into fatty acids for use as fuel by cells Glucagon and blood glucose levels Glucagon serves to keep blood glucose levels high enough for the body to function well. When blood glucose levels are low, glucagon is released and signals the liver to release glucose into the blood. Glucagon secretion in response to meals varies depending on what we eat: In response to a carbohydrate based meal, glucagon levels in the blood fall to prevent blood glucose rising too high. In response to a high protein meal, glucagon levels in the blood rise. Glucagon in diabetes In people with diabetes, glucagon’s presence can raise blood glucose levels too high. The reason for this is either because not enough insulin is present or, as is the case in type 2 diabetes, the body is less able to respond to insulin. In type 1 diabetes, high levels of circulating insulin can inhibit the release of glucagon in response to hypoglycemia. Medications which affect gluca Continue reading >>

Physiology Of The Pancreatic Α-cell And Glucagon Secretion: Role In Glucose Homeostasis And Diabetes

Physiology Of The Pancreatic Α-cell And Glucagon Secretion: Role In Glucose Homeostasis And Diabetes

Abstract The secretion of glucagon by pancreatic α-cells plays a critical role in the regulation of glycaemia. This hormone counteracts hypoglycaemia and opposes insulin actions by stimulating hepatic glucose synthesis and mobilization, thereby increasing blood glucose concentrations. During the last decade, knowledge of α-cell physiology has greatly improved, especially concerning molecular and cellular mechanisms. In this review, we have addressed recent findings on α-cell physiology and the regulation of ion channels, electrical activity, calcium signals and glucagon release. Our focus in this review has been the multiple control levels that modulate glucagon secretion from glucose and nutrients to paracrine and neural inputs. Additionally, we have described the glucagon actions on glycaemia and energy metabolism, and discussed their involvement in the pathophysiology of diabetes. Finally, some of the present approaches for diabetes therapy related to α-cell function are also discussed in this review. A better understanding of the α-cell physiology is necessary for an integral comprehension of the regulation of glucose homeostasis and the development of diabetes. Introduction The principal level of control on glycaemia by the islet of Langerhans depends largely on the coordinated secretion of glucagon and insulin by α- and β-cells respectively. Both cell types respond oppositely to changes in blood glucose concentration: while hypoglycaemic conditions induce α-cell secretion, β-cells release insulin when glucose levels increase (Nadal et al. 1999, Quesada et al. 2006a). Insulin and glucagon have opposite effects on glycaemia as well as on the metabolism of nutrients. Insulin acts mainly on muscle, liver and adipose tissue with an anabolic effect, inducing th Continue reading >>

Pancreatic Regulation Of Glucose Homeostasis

Pancreatic Regulation Of Glucose Homeostasis

Go to: The pancreas is an exocrine and endocrine organ The pancreas has key roles in the regulation of macronutrient digestion and hence metabolism/energy homeostasis by releasing various digestive enzymes and pancreatic hormones. It is located behind the stomach within the left upper abdominal cavity and is partitioned into head, body and tail. The majority of this secretory organ consists of acinar—or exocrine—cells that secrete the pancreatic juice containing digestive enzymes, such as amylase, pancreatic lipase and trypsinogen, into the ducts, that is, the main pancreatic and the accessory pancreatic duct. In contrast, pancreatic hormones are released in an endocrine manner, that is, direct secretion into the blood stream. The endocrine cells are clustered together, thereby forming the so-called islets of Langerhans, which are small, island-like structures within the exocrine pancreatic tissue that account for only 1–2% of the entire organ (Figure 1).1 There are five different cell types releasing various hormones from the endocrine system: glucagon-producing α-cells,2 which represent 15–20% of the total islet cells; amylin-, C-peptide- and insulin-producing β-cells,2 which account for 65–80% of the total cells; pancreatic polypeptide (PP)-producing γ-cells,3 which comprise 3–5% of the total islet cells; somatostatin-producing δ-cells,2 which constitute 3–10% of the total cells; and ghrelin-producing ɛ-cells,4 which comprise <1% of the total islet cells. Each of the hormones has distinct functions. Glucagon increases blood glucose levels, whereas insulin decreases them.5 Somatostatin inhibits both, glucagon and insulin release,6 whereas PP regulates the exocrine and endocrine secretion activity of the pancreas.3, 7 Altogether, these hormones regul Continue reading >>

Normal Regulation Of Blood Glucose

Normal Regulation Of Blood Glucose

The human body wants blood glucose (blood sugar) maintained in a very narrow range. Insulin and glucagon are the hormones which make this happen. Both insulin and glucagon are secreted from the pancreas, and thus are referred to as pancreatic endocrine hormones. The picture on the left shows the intimate relationship both insulin and glucagon have to each other. Note that the pancreas serves as the central player in this scheme. It is the production of insulin and glucagon by the pancreas which ultimately determines if a patient has diabetes, hypoglycemia, or some other sugar problem. In this Article Insulin Basics: How Insulin Helps Control Blood Glucose Levels Insulin and glucagon are hormones secreted by islet cells within the pancreas. They are both secreted in response to blood sugar levels, but in opposite fashion! Insulin is normally secreted by the beta cells (a type of islet cell) of the pancreas. The stimulus for insulin secretion is a HIGH blood glucose...it's as simple as that! Although there is always a low level of insulin secreted by the pancreas, the amount secreted into the blood increases as the blood glucose rises. Similarly, as blood glucose falls, the amount of insulin secreted by the pancreatic islets goes down. As can be seen in the picture, insulin has an effect on a number of cells, including muscle, red blood cells, and fat cells. In response to insulin, these cells absorb glucose out of the blood, having the net effect of lowering the high blood glucose levels into the normal range. Glucagon is secreted by the alpha cells of the pancreatic islets in much the same manner as insulin...except in the opposite direction. If blood glucose is high, then no glucagon is secreted. When blood glucose goes LOW, however, (such as between meals, and during Continue reading >>

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

The pancreas secretes insulin and glucagon, both of which play a vital role in regulating blood sugar levels. The two hormones work in balance. If the level of one hormone is outside the ideal range, blood sugar levels may spike or drop. Together, insulin and glucagon help keep conditions inside the body steady. When blood sugar is too high, the pancreas secretes more insulin. When blood sugar levels drop, the pancreas releases glucagon to bring them back up. Blood sugar and health The body converts carbohydrates from food into sugar (glucose), which serves as a vital source of energy. Blood sugar levels vary throughout the day but, in most instances, insulin and glucagon keep these levels normal. Health factors including insulin resistance, diabetes, and problems with diet can cause a person's blood sugar levels to soar or plummet. Blood sugar levels are measured in milligrams per decilitre (mg/dl). Ideal blood sugar ranges are as follows: Before breakfast - levels should be less than 100 mg/dl for a person without diabetes and 70-130 mg/dl for a person with diabetes. Two hours after meals - levels should be less than 140 mg/dl for a person without diabetes and less than 180 mg/dl for a person with diabetes. Blood sugar regulation Blood sugar levels are a measure of how effectively an individual's body uses glucose. When the body does not convert enough glucose for use, blood sugar levels remain high. Insulin helps the body's cells absorb glucose, lowering blood sugar and providing the cells with the glucose they need for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon forces the liver to release stored glucose, which causes the blood sugar to rise. Insulin and glucagon are both released by islet cells in the pancreas. These cells Continue reading >>

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

More in insulin