diabetestalk.net

What Is The Role Of Insulin In The Body?

The Role Of Insulin In The Body

The Role Of Insulin In The Body

Tweet Insulin is a hormone which plays a key role in the regulation of blood glucose levels. A lack of insulin, or an inability to adequately respond to insulin, can each lead to the development of the symptoms of diabetes. In addition to its role in controlling blood sugar levels, insulin is also involved in the storage of fat. Insulin is a hormone which plays a number of roles in the body’s metabolism. Insulin regulates how the body uses and stores glucose and fat. Many of the body’s cells rely on insulin to take glucose from the blood for energy. Insulin and blood glucose levels Insulin helps control blood glucose levels by signaling the liver and muscle and fat cells to take in glucose from the blood. Insulin therefore helps cells to take in glucose to be used for energy. If the body has sufficient energy, insulin signals the liver to take up glucose and store it as glycogen. The liver can store up to around 5% of its mass as glycogen. Some cells in the body can take glucose from the blood without insulin, but most cells do require insulin to be present. Insulin and type 1 diabetes In type 1 diabetes, the body produces insufficient insulin to regulate blood glucose levels. Without the presence of insulin, many of the body’s cells cannot take glucose from the blood and therefore the body uses other sources of energy. Ketones are produced by the liver as an alternative source of energy, however, high levels of the ketones can lead to a dangerous condition called ketoacidosis. People with type 1 diabetes will need to inject insulin to compensate for their body’s lack of insulin. Insulin and type 2 diabetes Type 2 diabetes is characterised by the body not responding effectively to insulin. This is termed insulin resistance. As a result the body is less able to t Continue reading >>

How Does Estrogen Facilitate And Prioritize Fat Storage?

How Does Estrogen Facilitate And Prioritize Fat Storage?

A2A. The relationship between estrogen levels and particular patterns of fat storage is well known. For example, women of reproductive age tend to store fat in their hips and thighs. After menopause, when estrogen levels drop, the fat storage patterns become more similar to men's (i.e. around the belly). However, the cellular mechanisms behind how estrogen facilitates these patterns are still very poorly understood [1]. It is thought that estrogen's effects on fat storage differs at different parts of the body [2]. I'll discuss some of the most recent research, from a journal article published in 2013 [1]. Note that this is a new study with a small sample size (12 premenopausal and 11 postmenopausal women). It's difficult to draw too many conclusions, and more research needs to be done. The researchers measured adipose tissue fatty acid (FA) storage and FA storage factors in the subjects. They found that premenopausal women (those of reproductive age, and with higher estrogen levels) had: Higher postprandial FA oxidation (postprandial refers to the period during or after dinner/lunch) Lower FA levels after a meal The study suggests that postmenopausal women experience increased rates of subcutaneous adipose tissue FA storage, and that changes in adipocyte FA storage factors are more responsible for this than changes in adipose tissue lipoprotein lipase activity. Postmenopausal women also had higher blood insulin levels (Figure 1). This hormone has a complex relationship with fat metabolism. One of its mechanisms is to prevent the body from using fat as a resource, by inhibiting glucagon release. Insulin and weight gain have a complex relationship. For example, diabetics who start taking insulin sometimes report weight gain [3]. On the other hand, women with polycystic o Continue reading >>

Insulin Levels During Exercise Critical To Performance

Insulin Levels During Exercise Critical To Performance

The amount of insulin circulating in the bloodstream during exercise is critical in determining performance and preventing fatigue from setting in early from hypoglycemia. In people with diabetes and in most people with type 2 diabetes, insulin levels in the blood fall during exercise, and the rise in glucagon released from the pancreas stimulates the liver to produce more glucose. If insulin is injected, however, the body can’t lower the circulating levels when starting exercise. Having too much insulin under those circumstances is bad news because it stimulates muscles to take up glucose from your bloodstream. Muscle contractions do the same thing, meaning higher insulin levels can result in double the glucose-lowering effect and rapid-onset lows. But, some insulin needs to be in the body. If you have too little, the body will be missing the normal counterbalance to the rise in glucose-raising hormones, and you could end up hyperglycemic instead. To perform optimally, you need some insulin in the body to counterbalance the release of glucose-raising hormones, but not so much insulin that blood sugar drops excessively. Timing of Exercise and Insulin Levels The timing of exercise may also play a big role in the body’s responses. For instance, a person is less likely to experience low blood sugar if he exercises before breakfast, especially before taking any insulin. At that time of day, only basal insulin (the insulin that covers the body’s need for insulin at rest separate from food intake) is on board, so the circulating levels will generally be low, but there are usually higher levels of cortisol, a hormone that increases insulin resistance, to compensate. If exercising after breakfast and a quick-acting insulin injection, the insulin dose may affect whether a Continue reading >>

Diabetes Treatment: Using Insulin To Manage Blood Sugar

Diabetes Treatment: Using Insulin To Manage Blood Sugar

Understanding how insulin affects your blood sugar can help you better manage your condition. Insulin therapy is often an important part of diabetes treatment. Understand the key role insulin plays in managing your blood sugar, and the goals of insulin therapy. What you learn can help you prevent diabetes complications. The role of insulin in the body It may be easier to understand the importance of insulin therapy if you understand how insulin normally works in the body and what happens when you have diabetes. Regulate sugar in your bloodstream. The main job of insulin is to keep the level of glucose in the bloodstream within a normal range. After you eat, carbohydrates break down into glucose, a sugar that serves as a primary source of energy, and enters the bloodstream. Normally, the pancreas responds by producing insulin, which allows glucose to enter the tissues. Storage of excess glucose for energy. After you eat — when insulin levels are high — excess glucose is stored in the liver in the form of glycogen. Between meals — when insulin levels are low — the liver releases glycogen into the bloodstream in the form of glucose. This keeps blood sugar levels within a narrow range. If your pancreas secretes little or no insulin (type 1 diabetes), or your body doesn't produce enough insulin or has become resistant to insulin's action (type 2 diabetes), the level of glucose in your bloodstream increases because it's unable to enter cells. Left untreated, high blood glucose can lead to complications such as blindness, nerve damage (neuropathy) and kidney damage. The goals of insulin therapy If you have type 1 diabetes, insulin therapy replaces the insulin your body is unable to produce. Insulin therapy is sometimes needed for type 2 diabetes and gestational diabete Continue reading >>

Pancreas: Functions, Anatomy & Insulin Production

Pancreas: Functions, Anatomy & Insulin Production

Pancreas Tucked away inside your abdomen is an organ that is important to blood sugar regulation, called the pancreas. Though you do not always hear about the pancreas unless a problem arises, you will see from this lesson that it plays a key role in maintaining your body's homeostasis. In fact, both your digestive system and endocrine system count on the pancreas to carry out vital functions. Your pancreas is about six inches long and sits deep in your abdomen, partly behind your stomach. The pancreas is somewhat triangular in shape, and its broad end comes up against the first section of the small intestine that we previously learned is called the duodenum. This is a unique gland because it is both an endocrine gland and an exocrine gland. As we previously learned, what makes a gland endocrine or exocrine depends on how it secretes the product it produces. For example, an endocrine gland secretes hormones directly into the blood. In contrast, an exocrine gland secretes a substance through a duct. In the case of your pancreas, we see that it can be considered an exocrine gland because it secretes digestive juices into the duodenum through the pancreatic duct, as seen in this picture: Now, when we study the digestive system, we see that the pancreas is a vital digestive organ. However, for this lesson, we will be focusing on the endocrine functions of the pancreas. So, if an endocrine organ secretes hormones directly into the blood, you might be wondering which hormones come from the pancreas? The answer is insulin and glucagon, and as we will see shortly, both help regulate the amount of sugar in your blood, but in opposite ways. Insulin is a hormone that lowers blood sugar levels. It is good to note that it would be equally correct to say that it's a hormone that lowe Continue reading >>

Common Genetic Variants Highlight The Role Of Insulin Resistance And Body Fat Distribution In Type 2 Diabetes, Independent Of Obesity

Common Genetic Variants Highlight The Role Of Insulin Resistance And Body Fat Distribution In Type 2 Diabetes, Independent Of Obesity

We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp– and oral glucose tolerance test–based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs per allele [95% CI], −0.03 [−0.04, −0.01]; P = 0.004). This score was associated with lower BMI (−0.01 [−0.01, −0.0]; P = 0.02) and gluteofemoral fat mass (−0.03 [−0.05, −0.02; P = 1.4 × 10−6) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and γ-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (Pinteraction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (Pinteraction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. Type 2 diabetes (T2D) develops when insulin secretion is insufficient to maintain normoglycemia, often in the context of an obesity-induced increase i Continue reading >>

Appetite Regulation And Weight Control: The Role Of Gut Hormones

Appetite Regulation And Weight Control: The Role Of Gut Hormones

The overwhelming increase in the prevalence of overweight and obesity in recent years represents one of the greatest threats to the health of the developed world. Among current treatments, however, gastrointestinal (GI) surgery remains the only approach capable of achieving significant weight loss results with long-term sustainability. As the obesity prevalence approaches epidemic proportions, the necessity to unravel the mechanisms regulating appetite control has garnered significant attention. It is well known that physical activity and food intake regulation are the two most important factors involved in body weight control. To regulate food intake, the brain must alter appetite. With this realization has come increased efforts to understand the intricate interplay between gut hormones and the central nervous system, and the role of these peptides in food intake regulation through appetite modulation. This review discusses the central mechanisms involved in body weight regulation and explores a suite of well characterized and intensely investigated anorexigenic and orexigenic gut hormones. Their appetite-regulating capabilities, post-GI surgery physiology and emerging potential as anti-obesity therapeutics are then reviewed. The overwhelming increase in the prevalence of overweight and obesity in recent years represents one of the greatest threats to the health of the developed world.1 Aside from the associated increases in morbidity and mortality, the personal, societal and devastating economic consequences have been well documented.2 Even modest weight loss achieved through currently used approaches can dramatically reduce these consequences, yet gastrointestinal (GI) surgery remains the only treatment offering sustainable weight loss results. Noteworthy, these res Continue reading >>

Glucose Metabolism

Glucose Metabolism

Energy is required for the normal functioning of the organs in the body. Many tissues can also use fat or protein as an energy source but others, such as the brain and red blood cells, can only use glucose. Glucose is stored in the body as glycogen. The liver is an important storage site for glycogen. Glycogen is mobilized and converted to glucose by gluconeogenesis when the blood glucose concentration is low. Glucose may also be produced from non-carbohydrate precursors, such as pyruvate, amino acids and glycerol, by gluconeogenesis. It is gluconeogenesis that maintains blood glucose concentrations, for example during starvation and intense exercise. The endocrine pancreas The pancreas has both endocrine and exocrine functions. The endocrine tissue is grouped together in the islets of Langerhans and consists of four different cell types each with its own function. Alpha cells produce glucagon. Beta cells produce proinsulin. Proinsulin is the inactive form of insulin that is converted to insulin in the circulation. Delta cells produce somatostatin. F or PP cells produce pancreatic polypeptide. Regulation of insulin secretion Insulin secretion is increased by elevated blood glucose concentrations, gastrointestinal hormones and Beta adrenergic stimulation. Insulin secretion is inhibited by catecholamines and somatostatin. The role of insulin and glucagon in glucose metabolism Insulin and glucagon work synergistically to keep blood glucose concentrations normal. Insulin: An elevated blood glucose concentration results in the secretion of insulin: glucose is transported into body cells. The uptake of glucose by liver, kidney and brain cells is by diffusion and does not require insulin. Click on the thumbnail for details of the effect of insulin: Glucagon: The effects of glu Continue reading >>

Insulin

Insulin

Insulin, hormone that regulates the level of sugar (glucose) in the blood and that is produced by the beta cells of the islets of Langerhans in the pancreas. Insulin is secreted when the level of blood glucose rises—as after a meal. When the level of blood glucose falls, secretion of insulin stops, and the liver releases glucose into the blood. Insulin was first reported in pancreatic extracts in 1921, having been identified by Canadian scientists Frederick G. Banting and Charles H. Best and by Romanian physiologist Nicolas C. Paulescu, who was working independently and called the substance “pancrein.” After Banting and Best isolated insulin, they began work to obtain a purified extract, which they accomplished with the help of Scottish physiologist J.J.R. Macleod and Canadian chemist James B. Collip. Banting and Macleod shared the 1923 Nobel Prize for Physiology or Medicine for their work. Insulin is a protein composed of two chains, an A chain (with 21 amino acids) and a B chain (with 30 amino acids), which are linked together by sulfur atoms. Insulin is derived from a 74-amino-acid prohormone molecule called proinsulin. Proinsulin is relatively inactive, and under normal conditions only a small amount of it is secreted. In the endoplasmic reticulum of beta cells the proinsulin molecule is cleaved in two places, yielding the A and B chains of insulin and an intervening, biologically inactive C peptide. The A and B chains become linked together by two sulfur-sulfur (disulfide) bonds. Proinsulin, insulin, and C peptide are stored in granules in the beta cells, from which they are released into the capillaries of the islets in response to appropriate stimuli. These capillaries empty into the portal vein, which carries blood from the stomach, intestines, and pancrea Continue reading >>

Role Of Insulin And Other Hormones In Diabetes

Role Of Insulin And Other Hormones In Diabetes

SHARE RATE★★★★★ Insulin and glucose Our bodies require energy to function properly and we get that energy from three food groups: protein, fat, and carbohydrates (sugars, starches, and fibers). When the body digests carbohydrates, they are transformed through digestion into a very important source of instant energy, a form of sugar called glucose.1,2 Three forms of simple sugars (also called monosaccharides) are able to enter the bloodstream directly after digestion. These are often broken down from more complex sugars (polysaccharides and disaccharides). These simple sugars include glucose (found in most carbohydrates, including grains and starches), fructose (found in fruits and vegetables), and galactose (found in dairy products and in certain vegetables). The word glucose comes from the Greek word for sweet, and it is the key source of energy for cells in the body. Upon digestion, glucose can be used for instant energy or stored in the form of glycogen when the body’s energy needs are being met.1,2 Hormones and glucose control Our bodies depend on the action of a number of different hormones, working together in conjunction, to control how we use glucose. We depend on insulin, a hormone produced in the beta cells of the pancreas (an organ located behind the stomach) to use glucose. Insulin serves as sort of a “gate keeper,” allowing glucose to enter cells where it can be transformed into energy and used to support vital cell functions. Insulin also has other important functions related to the way our body uses glucose.3,4 In addition to insulin, another hormone produced by beta cells called amylin controls how quickly glucose is released into the blood stream after a meal. It does this by slowing emptying of the stomach and increasing the feeling tha Continue reading >>

The Effects Of Insulin On The Body

The Effects Of Insulin On The Body

Insulin is a hormone produced by the pancreas. Its function is to allow other cells to transform glucose into energy throughout your body. Without insulin, cells are starved for energy and must seek an alternate source. This can lead to life-threatening complications. The Effects of Insulin on the Body Insulin is a natural hormone produced in the pancreas. When you eat, your pancreas releases insulin to help your body make energy out of sugars (glucose). It also helps you store energy. Insulin is a vital part of metabolism. Without it, your body would cease to function. In type 1 diabetes, the pancreas is no longer able to produce insulin. In Type 2 diabetes, the pancreas initially produces insulin, but the cells of your body are unable to make good use of the insulin (insulin resistance). Uncontrolled diabetes allows glucose to build up in the blood rather than being distributed to cells or stored. This can wreak havoc with virtually every part of your body. Complications of diabetes include kidney disease, nerve damage, eye problems, and stomach problems. People with Type 1 diabetes need insulin therapy to live. Some people with Type 2 diabetes must also take insulin therapy to control blood sugar levels and avoid complications. Insulin is usually injected into the abdomen, but it can also be injected into the upper arms, thighs, or buttocks. Injection sites should be rotated within the same general location. Frequent injections in the same spot can cause fatty deposits that make delivery of insulin more difficult. Some people use a pump, which delivers insulin through a catheter placed underneath the skin of the abdomen. When you eat, food travels to your stomach and small intestines where it is broken down into nutrients. The nutrients are absorbed and distributed v Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone; a chemical messenger produced in one part of the body to have an action on another. It is a protein responsible for regulating blood glucose levels as part of metabolism.1 The body manufactures insulin in the pancreas, and the hormone is secreted by its beta cells, primarily in response to glucose.1 The beta cells of the pancreas are perfectly designed "fuel sensors" stimulated by glucose.2 As glucose levels rise in the plasma of the blood, uptake and metabolism by the pancreas beta cells are enhanced, leading to insulin secretion.1 Insulin has two modes of action on the body - an excitatory one and an inhibitory one:3 Insulin stimulates glucose uptake and lipid synthesis It inhibits the breakdown of lipids, proteins and glycogen, and inhibits the glucose pathway (gluconeogenesis) and production of ketone bodies (ketogenesis). What is the pancreas? The pancreas is the organ responsible for controlling sugar levels. It is part of the digestive system and located in the abdomen, behind the stomach and next to the duodenum - the first part of the small intestine.4 The pancreas has two main functional components:4,5 Exocrine cells - cells that release digestive enzymes into the gut via the pancreatic duct The endocrine pancreas - islands of cells known as the islets of Langerhans within the "sea" of exocrine tissue; islets release hormones such as insulin and glucagon into the blood to control blood sugar levels. Islets are highly vascularized (supplied by blood vessels) and specialized to monitor nutrients in the blood.2 The alpha cells of the islets secrete glucagon while the beta cells - the most abundant of the islet cells - release insulin.5 The release of insulin in response to elevated glucose has two phases - a first around 5-10 minutes after g Continue reading >>

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

Insulin Resistance And Cancer: The Role Of Insulin And Igfs

Insulin Resistance And Cancer: The Role Of Insulin And Igfs

Abstract Insulin, IGF1, and IGF2 are the most studied insulin-like peptides (ILPs). These are evolutionary conserved factors well known as key regulators of energy metabolism and growth, with crucial roles in insulin resistance-related metabolic disorders such as obesity, diseases like type 2 diabetes mellitus, as well as associated immune deregulations. A growing body of evidence suggests that insulin and IGF1 receptors mediate their effects on regulating cell proliferation, differentiation, apoptosis, glucose transport, and energy metabolism by signaling downstream through insulin receptor substrate molecules and thus play a pivotal role in cell fate determination. Despite the emerging evidence from epidemiological studies on the possible relationship between insulin resistance and cancer, our understanding on the cellular and molecular mechanisms that might account for this relationship remains incompletely understood. The involvement of IGFs in carcinogenesis is attributed to their role in linking high energy intake, increased cell proliferation, and suppression of apoptosis to cancer risks, which has been proposed as the key mechanism bridging insulin resistance and cancer. The present review summarizes and discusses evidence highlighting recent advances in our understanding on the role of ILPs as the link between insulin resistance and cancer and between immune deregulation and cancer in obesity, as well as those areas where there remains a paucity of data. It is anticipated that issues discussed in this paper will also recover new therapeutic targets that can assist in diagnostic screening and novel approaches to controlling tumor development. Continue reading >>

Facts About Diabetes And Insulin

Facts About Diabetes And Insulin

Diabetes is a very common disease, which, if not treated, can be very dangerous. There are two types of diabetes. They were once called juvenile-onset diabetes and adult diabetes. However, today we know that all ages can get both types so they are simply called type 1 and type 2 diabetes. Type 1, which occurs in approximately 10 percent of all cases, is an autoimmune disease in which the immune system, by mistake, attacks its own insulin-producing cells so that insufficient amounts of insulin are produced - or no insulin at all. Type 1 affects predominantly young people and usually makes its debut before the age of 30, and most frequently between the ages of 10 and 14. Type 2, which makes up the remaining 90 percent of diabetes cases, commonly affects patients during the second half of their lives. The cells of the body no longer react to insulin as they should. This is called insulin resistance. In the early 1920s, Frederick Banting, John Macleod, George Best and Bertram Collip isolated the hormone insulin and purified it so that it could be administered to humans. This was a major breakthrough in the treatment of diabetes type 1. Insulin Insulin is a hormone. Hormones are chemical substances that regulate the cells of the body and are produced by special glands. The hormone insulin is a main regulator of the glucose (sugar) levels in the blood. Insulin is produced in the pancreas. To be more specific, it's produced by the beta cells in the islets of Langerhans in the pancreas. When we eat, glucose levels rise, and insulin is released into the bloodstream. The insulin acts like a key, opening up cells so they can take in the sugar and use it as an energy source. Sugar is one of the top energy sources for the body. The body gets it in many forms, but mainly as carbohydr Continue reading >>

More in insulin