diabetestalk.net

What Is Insulin Made Up Of

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

Cell Factories For Insulin Production

Cell Factories For Insulin Production

Go to: Introduction The pioneering work of Stanley Cohen and Herbert Boyer, who invented the technique of DNA cloning, signaled the birth of genetic engineering, which allowed genes to transfer among different biological species with ease [1]. Their discovery led to the development of several recombinant proteins with therapeutic applications such as insulin and growth hormone. Genes encoding human insulin and growth hormone were cloned and expressed in E. coli in 1978 and 1979 respectively. The first licensed drug produced using recombinant DNA technology was human insulin, which was developed by Genentech and licensed as well as marketed by Eli Lilly in 1982. There are more than 300 biopharmaceutical products including therapeutic proteins and antibodies in the market with sales exceeding USD100 billion [2,3]. Therapeutic monoclonal antibodies have captured the major market share (>USD18 billion) followed by the hormones (>USD11 billion) and growth factors (>USD10 billion) [4]. Biopharmaceuticals approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) from 2004 to 2013 are largely derived from mammalian cell (56%); E. Coli (24%); S. Cerevisiae (13%); Transgenic animals & plants (3%) and insect cells (4%) as shown in Figure 1 [5-13]. At present, insulin is being produced predominantly in E. coli and Saccharomyces cerevisiae for treatment of diabetic patients. Since the early 1920s, diabetic patients were treated with insulin, which was purified from bovine or porcine pancreas. The development in the field of genetic engineering allowed the production of insulin in E. coli and yeast, which have been approved for therapeutic applications in human by FDA [14,15]. Nowadays, recombinant human insulin is mainly produced either in E. coli or Continue reading >>

Gene Therapy And Genetic Engineering

Gene Therapy And Genetic Engineering

For bacteria to make insulin, where do they get the insulin gene to insert into the bacteria? -A graduate student from California Back in the 1970's scientists managed to coax bacteria into making the insulin that many people need to treat their diabetes. They did this by putting the human insulin gene into the bacteria. The insulin gene they used came from human DNA. The scientists were able to get this gene in a couple of different ways. Neither of which was very easy back in the 70's! One group managed to make it on a machine called a DNA synthesizer. Like its name sounds, this machine makes DNA. Luckily the insulin gene is small since these machines could only make small snippets of DNA. A second group managed to fish it out of human DNA. This was done by putting random pieces of human DNA into bacteria and finding the bacterium that had the insulin gene. This is really hard to do but used to be the only way to get big pieces of DNA. Nowadays, what with the human genome project, it'd be much easier. By knowing just a bit about the gene they're interested in, scientists can just go look it up on the computer. Then they can simply pluck the DNA they're interested in right out of a tube of human DNA. Of course getting the gene isn't enough. You also need to get it into bacteria and have the bacteria be able to read the gene. Then you need to purify the insulin away from the bacteria. Luckily you only asked about the first part so I'll focus on that. What I thought I'd do is go over how scientists originally got the insulin gene. Then we'll look at what they might do now in a similar situation. But first, we're going to need to go into a little background. We need to go over what genes and proteins are and how they're related. Only then will we see how scientists were a Continue reading >>

Ask The Diabetes Team

Ask The Diabetes Team

Question: From the United Kingdom: How is artificial insulin made? Answer: What a great question! I'm not sure how much detail you're interested in, but here is the short answer. Insulin is created in a special non-disease-producing laboratory strain of E. coli bacteria (not the same type that causes diarrhea and kidney problems that you may be familiar with) that has been genetically altered by the addition of the gene for human insulin production. The bacteria produces the insulin which is then chemically harvested from the medium in which the bacteria is grown, purified and prepared for human use. Here is the long answer if you are interested: [Note: the following is adapted from Overview of Biotechnology at the End of the 20th Century. Please see that reference for even more details.] Modern biotechnology began when recombinant human insulin was first marketed in the United States in 1982. The effort leading up to this landmark event began in the early 1970's when research scientists developed protocols to construct vectors, by cutting out and pasting pieces of DNA together to create a new piece of DNA (recombinant DNA), that could be inserted into the bacterium, Escherichia coli (transformation). If one of the pieces of the new DNA included a gene which produced a protein enzyme that broke down a particular antibiotic, the bacterium would be resistant to that antibiotic and could grow in a medium containing it. To the piece of DNA that conferred resistance of Escherichia coli to a particular antibiotic was added the human gene for the making of insulin. If this recombinant DNA containing the human insulin gene was used to transform Escherichia coli,and the bacteria were plated on an agar plate containing the antibiotic, the bacteria that grew contained not only the Continue reading >>

Brewing Insulin Using Genetically Modified Bacteria (#gmomonday)

Brewing Insulin Using Genetically Modified Bacteria (#gmomonday)

Image: Africa Studio via Shutterstock.com The American Juvenile Diabetes Association estimates that about 3 million Americans suffer from type 1 diabetes. So perhaps, you, like me, know somebody who needs insulin in order to survive. Type 1 diabetes is a disease caused by the failure of the pancreas to produce insulin, a hormone that regulates the amount of sugar in the blood. I first learned about diabetes in grade school when a friend was diagnosed. His pancreas stopped producing the insulin his body needed, and he began drinking lots of water and feeling very sick. I went to the hospital with his family and learned how to give insulin injections and understand blood sugar measurements. One thing I didn’t learn at the time is the amazing biotechnology story behind the tiny bottles of life-saving insulin that showed up in his refrigerator. Insulin was first produced in the 1920s by scientists Frederick Banting and Charles Best. Banting and Best had discovered that insulin was the hormone that diabetics lacked, and they figured out a way to harvest insulin from animal pancreases. In what is commonly described as one of medicine’s “most dramatic moments,” scientists went into a diabetic children’s ward, injecting the comatose and dying children with this insulin. By the time they reached the far end of the ward, children on the near end were already waking up. The refining process for insulin was perfected, and up until the 1980s, people around the world relied on insulin from pigs and cows to lift the death sentence of diabetes. But porcine and bovine insulin, although similar to the human variety, were not exactly the same. Although most people have no problem using insulin from these animals, some reacted poorly to it. The chemical structure of human insulin Continue reading >>

Insulin

Insulin

Insulin, hormone that regulates the level of sugar (glucose) in the blood and that is produced by the beta cells of the islets of Langerhans in the pancreas. Insulin is secreted when the level of blood glucose rises—as after a meal. When the level of blood glucose falls, secretion of insulin stops, and the liver releases glucose into the blood. Insulin was first reported in pancreatic extracts in 1921, having been identified by Canadian scientists Frederick G. Banting and Charles H. Best and by Romanian physiologist Nicolas C. Paulescu, who was working independently and called the substance “pancrein.” After Banting and Best isolated insulin, they began work to obtain a purified extract, which they accomplished with the help of Scottish physiologist J.J.R. Macleod and Canadian chemist James B. Collip. Banting and Macleod shared the 1923 Nobel Prize for Physiology or Medicine for their work. Insulin is a protein composed of two chains, an A chain (with 21 amino acids) and a B chain (with 30 amino acids), which are linked together by sulfur atoms. Insulin is derived from a 74-amino-acid prohormone molecule called proinsulin. Proinsulin is relatively inactive, and under normal conditions only a small amount of it is secreted. In the endoplasmic reticulum of beta cells the proinsulin molecule is cleaved in two places, yielding the A and B chains of insulin and an intervening, biologically inactive C peptide. The A and B chains become linked together by two sulfur-sulfur (disulfide) bonds. Proinsulin, insulin, and C peptide are stored in granules in the beta cells, from which they are released into the capillaries of the islets in response to appropriate stimuli. These capillaries empty into the portal vein, which carries blood from the stomach, intestines, and pancrea Continue reading >>

Ocr Gateway Triple Science Topics

Ocr Gateway Triple Science Topics

Genetic engineering can be used to create organisms that produce large amounts of useful substances - for example, bacteria can be engineered to produce human insulin to treat diabetics. Genetic engineering can also be used to create and store DNA fingerprints, which can be used for identification purposes. Genetic engineering Genetic engineering involves altering the genetic code of an organism by inserting a gene or genes from another organism. Bacteria can be genetically engineered (genetically modified) to produce useful human proteins including human growth hormone and human insulin. One advantage of using bacteria is that they can be grown in large fermenters, producing large amounts of these useful proteins. You should be able to describe the main stages in genetic engineering, and in particular how this works for engineering bacteria to produce human insulin. Main stage Insulin example Desired gene is identified Human insulin gene is identified The gene is removed from the organism’s DNA The gene for making human insulin is cut out of some human DNA The DNA in other organism is cut open A loop of bacterial DNA is cut open The gene is inserted into the cut DNA The human insulin gene is inserted into the cut loop, and this loop is inserted into a bacterial cell The inserted gene works in the transgenic (genetically engineered) organism The bacterial cell produces human insulin The transgenic organism is cloned to produce lots of identical copies The transgenic bacterium is cloned to make lots of copies Large amounts of human insulin is collected The animation shows how this works. You have an old or no version of Flash - you need to upgrade to view this content! Go to the WebWise Flash install guide DNA fingerprinting A person’s DNA is unique to them. Their DN Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

Bme 181 Section 1

Bme 181 Section 1

INSULIN Produced in the pancreas. A necessary hormone that enables bodily cells to allow blood sugar to enter and be converted into energy. WHAT IS INSULIN? Insulin: A protein hormone Made up of two chains of amino acids. "A" chain which has 21 amino acids "B" chain which has 30 amino acids Linked together by two disulfide bonds. WHY IS INSULIN IMPORTANT? Diabetes affects 25.8 million people of all ages. ( 7 million of which are undiagnosed). 8.3 % of the U.S. population Type 1 diabetes Autoimmune disease where the immune system destroys the beta cells (insulin producing cells of the pancreas) Pancreas doesn't produce enough insulin Requires daily administration of insulin. The cause of type 1 diabetes is not known and it is not preventable with current knowledge. Type 2 diabetes The body ineffectively uses insulin. Type 2 diabetes comprises 90% of people with diabetes around the world, and is largely the result of excess body weight and physical inactivity. WHAT WAS USED BEFORE HAND? Pig and cattle pancreas glands were once the only viable method. This was sufficient for most diabetics however there was issues: Animals insulin caused some allergic reactions. Not a true human match to insulin. Not the most efficient way to obtain insulin. INTRODUCTION OF SYNTHETIC INSULIN Synthetic insulin was first made in 1978 by scientists at Genetech, Inc. and City of Hope National Medical Center. Made possible by the discovery restriction enzymes & DNA ligase. Found naturally in bacteria. Catalysts to cut and rejoin DNA fragments. HOW IT’S MADE Scientists use restriction enzymes and DNA ligase to make and link together fragments of DNA sequences to form complete genes. These are then stitched into circular DNA strands called plasmids. The plasmids are introduced into benign Continue reading >>

Structural Biochemistry/protein Function/insulin

Structural Biochemistry/protein Function/insulin

Insulin is a hormone secreted by the pancreas that regulates glucose levels in the blood. Without insulin, cells cannot use the energy from glucose to carry out functions within the body. Insulin was first discovered in 1921 by Frederick Grant Banting and Charles Best from extracted substances from the pancreas of dogs in their laboratory. The material was then used to keep diabetic dogs alive, and then used in 1922 on a 14 year old diabetic boy. The FDA approved insulin in 1939. In 1966 insulin was synthesized by Michael Katsoyannis in his laboratory, which marked the first complete hormone to be successfully synthesized. Synthetic insulin is used as a drug to treat diabetes, and the current forms on the market include insulin from bovine and porcine pancreases, but the most widely used is a form made from recombinant human insulin. Insulin is made in the pancreas by beta cells. After the body takes in food, these beta cells release insulin, which enables cells in the liver, muscles and fat tissues to take up glucose and either store it as glycogen or allow blood to transfer it to organs in the body for use as an energy source. This process stops the use of fat as a source of energy. When glucose levels are elevated in the blood, insulin is produced at higher rates by the pancreas in order to maintain normal sugar concentrations in the blood. Without insulin, the body cannot process glucose effectively and glucose begins to build up in the blood stream instead of being transported to different cells . In contrast with elevated levels of glucose in the blood, when there is a deficit of glucose available to the body, alpha cells in the pancreas release glucagon, a hormone that causes the liver to convert stored glycogen into usable glucose which is then released into the Continue reading >>

Celebrating A Milestone: Fda's Approval Of First Genetically-engineered Product

Celebrating A Milestone: Fda's Approval Of First Genetically-engineered Product

This article originally appeared in the "History Corner" column of the September-October 2007 issue of Update magazine, the bimonthly publication of the Food and Drug Law Institute. Suzanne White Junod, Ph.D. This year marks the twenty-fifth anniversary of FDA's approval of the world's first recombinant DNA drug product—human insulin (Eli Lilly & Co.'s Humulin). In 1921, Frederick Banting and Charles Best extracted the hormone insulin, which controls blood sugar levels, from the pancreas' of dogs, and in 1922 administered the extract to a 14-year-old boy suffering from type I diabetes mellitus, saving his life and proving insulin's efficacy in treating human diabetes. Following their discovery, virtually all insulin for human use was harvested from slaughterhouse animals, usually porcine or bovine. In the 25 years since FDA's approval of Humulin, however, r-DNA human insulin has proven indistinguishable from pancreatic human insulin, has been proven both safe and efficacious for millions of patients, and, as a result, has almost completely displaced animal source insulins. FDA regulatory scientists worked with Lilly scientists in solving novel challenges related to the production of human insulin in bacteria and played a key role in insuring the safety and efficacy of the first medical product of gene-splicing technology approved for use in humans. Recombinant DNA methodology was just one of many remarkable scientific advances made possible as a result of James Watson and Francis Crick's original discovery of the double helix structure of human DNA, announced in 1953. 1 Precise knowledge of genetic structures has moved many scientific fields forward, including criminology and, more recently, pharmacogenetics and toxicogenetics, which are at the heart of discussions an Continue reading >>

What Is Insulin?

What Is Insulin?

The insulin your body makes naturally is a hormone. Insulin helps move sugar from the blood into the body’s cells, where it can be used for energy. The pancreas releases insulin all the time. The pancreas is an organ that sits near the stomach. Special cells in the pancreas, called beta cells, make insulin. In between meals, the pancreas releases a low level of insulin to help the body produce energy. When you eat, your blood sugar (also known as blood glucose) rises. The pancreas releases more insulin to take sugar from the food you eat and bring it to the cells to be changed into energy. This brings the blood sugar level in the blood back down. Insulin works like a key, unlocking cells to help deliver sugar from the blood. Every cell in the body has a lock on its cell wall, called a receptor. Insulin fits into that lock like a key, allowing sugar to enter the cells. When the body is not able to make enough insulin, blood sugar is locked out of the cells, causing it to stay in the bloodstream. This leads to blood sugar building until the levels are too high, which is also called hyperglycemia. This extra sugar is what makes people feel the symptoms of diabetes, such as often feeling tired or thirsty. In the case of diabetes, when the body is either not making enough insulin, or cannot use it properly, insulin therapy is often used to replace what the body no longer produces. History of Insulin Therapy From the 1920s to the 1980s, insulin from animals is used for treatment In the 1980s, the first generation of man-made insulin, called "human insulin," is created. This man-made insulin was genetically identical to the body’s naturally produced insulin By the late 1990s, man-made insulin analogs were being developed. Insulin analogs are similar to regular human insuli Continue reading >>

Insulin

Insulin

A hormone secreted by the beta cells of the pancreas to help move glucose from the blood into body cells for energy. People with Type 1 diabetes lose the ability to produce insulin and must inject it. Some people with Type 2 diabetes also need to inject insulin because the insulin that is produced by their pancreas does not adequately lower their blood glucose level. Scientists discovered insulin in the early 1920’s and found that it could be used to successfully treat diabetes. Since then, a variety of insulins have been developed to meet the different needs of people with diabetes. In the past, all commercially available insulin came from the pancreases of cows or pigs. Pork and beef insulins are similar to human insulin, differing only in one or a few amino acids (protein building blocks). However, even a slight difference is enough to elicit an allergic response in some people. To overcome this problem, researchers looked for ways to make insulin that would more closely resemble human insulin. Since the early 1980’s, two methods have been used to make human insulin from nonhuman sources. One method involves the use of enzymes to convert pork insulin into human insulin by altering the one amino acid that is different. The second and more widely used method uses recombinant DNA technology. In this process, bacteria or yeast cells are genetically altered to produce human insulin in large amounts. Human insulin produced by genetic engineering is purer than other forms of insulin because it is not combined with other proteins that can also trigger allergic responses. Pork and beef insulin are no longer being sold in the United States. In addition to originating from different sources, different types of insulin vary in their “action profile.” That’s to say, the Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone that is important for metabolism and utilization of energy from the ingested nutrients - especially glucose. Insulin chemistry and etymology Insulin is a protein chain or peptide hormone. There are 51 amino acids in an insulin molecule. It has a molecular weight of 5808 Da. Insulin is produced in the islets of Langerhans in the pancreas. The name insulin comes from the Latin ''insula'' for "island" from the cells that produce the hormone in the pancreas. Insulin's structure varies slightly between species of animal. Both porcine (from pigs) and bovine (from cows) insulin are similar to human insulin but porcine insulin resembles human insulin more closely. What does insulin do? Insulin has several broad actions including: It causes the cells in the liver, muscle, and fat tissue to take up glucose from blood and convert it to glycogen that can be stored in the liver and muscles Insulin also prevents the utilization of fat as an energy source. In absence of insulin or in conditions where insulin is low glucose is not taken up by body cells, and the body begins to use fat as an energy source Insulin also controls other body systems and regulates the amino acid uptake by body cells It has several other anabolic effects throughout the body as well Secretion of insulin Insulin is synthesized in significant quantities only in beta cells in the pancreas. It is secreted primarily in response to elevated blood concentrations of glucose. Insulin thus can regulate blood glucose and the body senses and responds to rise in blood glucose by secreting insulin. Other stimuli like sight and taste of food, nerve stimulation and increased blood concentrations of other fuel molecules, including amino acids and fatty acids, also promote insulin secretion. What happens wh Continue reading >>

The History Of A Wonderful Thing We Call Insulin

The History Of A Wonderful Thing We Call Insulin

Since the dawn of time, we have searched for ways to make life easier for us. The modern age has given us some amazing technological advances—what we would do without the internet, our iPhones or high-speed travel? For many people, surviving life without these things sounds rough. However, if you have diabetes, no doubt you’re also a big fan of one particular 20th-century discovery: insulin. Before insulin was discovered in 1921, people with diabetes didn’t live for long; there wasn’t much doctors could do for them. The most effective treatment was to put patients with diabetes on very strict diets with minimal carbohydrate intake. This could buy patients a few extra years but couldn’t save them. Harsh diets (some prescribed as little as 450 calories a day!) sometimes even caused patients to die of starvation. So how did this wonderful breakthrough blossom? Let’s travel back a little more than 100 years ago.… In 1889, two German researchers, Oskar Minkowski and Joseph von Mering, found that when the pancreas gland was removed from dogs, the animals developed symptoms of diabetes and died soon afterward. This led to the idea that the pancreas was the site where “pancreatic substances” (insulin) were produced. Later experimenters narrowed this search to the islets of Langerhans (a fancy name for clusters of specialized cells in the pancreas). In 1910, Sir Edward Albert Sharpey-Shafer suggested only one chemical was missing from the pancreas in people with diabetes. He decided to call this chemical insulin, which comes for the Latin word insula, meaning “island.” So what happened next? Something truly miraculous. In 1921, a young surgeon named Frederick Banting and his assistant Charles Best figured out how to remove insulin from a dog’s pancreas. S Continue reading >>

More in insulin