diabetestalk.net

What Is Insulin In The Body?

Insulin

Insulin

This article is about the insulin protein. For uses of insulin in treating diabetes, see insulin (medication). Not to be confused with Inulin. Insulin (from Latin insula, island) is a peptide hormone produced by beta cells of the pancreatic islets, and it is considered to be the main anabolic hormone of the body.[5] It regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of, especially, glucose from the blood into fat, liver and skeletal muscle cells.[6] In these tissues the absorbed glucose is converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver, into both.[6] Glucose production and secretion by the liver is strongly inhibited by high concentrations of insulin in the blood.[7] Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is therefore an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules inside the cells. Low insulin levels in the blood have the opposite effect by promoting widespread catabolism, especially of reserve body fat. Beta cells are sensitive to glucose concentrations, also known as blood sugar levels. When the glucose level is high, the beta cells secrete insulin into the blood; when glucose levels are low, secretion of insulin is inhibited.[8] Their neighboring alpha cells, by taking their cues from the beta cells,[8] secrete glucagon into the blood in the opposite manner: increased secretion when blood glucose is low, and decreased secretion when glucose concentrations are high.[6][8] Glucagon, through stimulating the liver to release glucose by glycogenolysis and gluconeogenesis, has the opposite effect of insulin.[6][8] The secretion of insulin and glucagon into the Continue reading >>

Facts About Diabetes And Insulin

Facts About Diabetes And Insulin

Diabetes is a very common disease, which, if not treated, can be very dangerous. There are two types of diabetes. They were once called juvenile-onset diabetes and adult diabetes. However, today we know that all ages can get both types so they are simply called type 1 and type 2 diabetes. Type 1, which occurs in approximately 10 percent of all cases, is an autoimmune disease in which the immune system, by mistake, attacks its own insulin-producing cells so that insufficient amounts of insulin are produced - or no insulin at all. Type 1 affects predominantly young people and usually makes its debut before the age of 30, and most frequently between the ages of 10 and 14. Type 2, which makes up the remaining 90 percent of diabetes cases, commonly affects patients during the second half of their lives. The cells of the body no longer react to insulin as they should. This is called insulin resistance. In the early 1920s, Frederick Banting, John Macleod, George Best and Bertram Collip isolated the hormone insulin and purified it so that it could be administered to humans. This was a major breakthrough in the treatment of diabetes type 1. Insulin Insulin is a hormone. Hormones are chemical substances that regulate the cells of the body and are produced by special glands. The hormone insulin is a main regulator of the glucose (sugar) levels in the blood. Insulin is produced in the pancreas. To be more specific, it's produced by the beta cells in the islets of Langerhans in the pancreas. When we eat, glucose levels rise, and insulin is released into the bloodstream. The insulin acts like a key, opening up cells so they can take in the sugar and use it as an energy source. Sugar is one of the top energy sources for the body. The body gets it in many forms, but mainly as carbohydr Continue reading >>

Everything You Need To Know About Insulin

Everything You Need To Know About Insulin

Insulin is a hormone made in your pancreas, a gland located behind your stomach. It allows your body to use glucose for energy. Glucose is a type of sugar found in many carbohydrates. After a meal or snack, the digestive tract breaks down carbohydrates and changes them into glucose. Glucose is then absorbed into your bloodstream through the lining in your small intestine. Once glucose is in your bloodstream, insulin causes cells throughout your body to absorb the sugar and use it for energy. Insulin also helps balance your blood glucose levels. When there’s too much glucose in your bloodstream, insulin signals your body to store the excess in your liver. The stored glucose isn’t released until your blood glucose levels decrease, such as between meals or when your body is stressed or needs an extra boost of energy. Diabetes occurs when your body doesn't use insulin properly or doesn't make enough insulin. There are two main types of diabetes: type 1 and type 2. Type 1 diabetes is a type of autoimmune disease. These are diseases in which the body attacks itself. If you have type 1 diabetes, your body can’t make insulin. This is because your immune system has destroyed all of the insulin-producing cells in your pancreas. This disease is more commonly diagnosed in young people, although it can develop in adulthood. In type 2 diabetes, your body has become resistant to the effects of insulin. This means your body needs more insulin to get the same effects. Therefore, your body overproduces insulin to keep blood glucose levels normal. However, after many years of overproduction, the insulin-producing cells in your pancreas burn out. Type 2 diabetes also affects people of any age, but typically develops later in life. Injections of insulin as a replacement or supplement Continue reading >>

Insulin And Insulin Resistance

Insulin And Insulin Resistance

Go to: Abstract As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the compl Continue reading >>

What Does Insulin Do In My Body?

What Does Insulin Do In My Body?

Diabetes mellitus (MEL-ih-tus), often referred to as diabetes, is characterized by high blood glucose (sugar) levels that result from the body’s inability to produce enough insulin and/or effectively utilize the insulin. Diabetes is a serious, life-long condition and the sixth leading cause of death in the United States. Diabetes is a disorder of metabolism (the body's way of digesting food and converting it into energy). There are three forms of diabetes. Type 1 diabetes is an autoimmune disease that accounts for five- to 10-percent of all diagnosed cases of diabetes. Type 2 diabetes may account for 90- to 95-percent of all diagnosed cases. The third type of diabetes occurs in pregnancy and is referred to as gestational diabetes. Left untreated, gestational diabetes can cause health issues for pregnant women and their babies. People with diabetes can take preventive steps to control this disease and decrease the risk of further complications. Continue reading >>

The Facts About Insulin For Diabetes

The Facts About Insulin For Diabetes

Insulin is a hormone that your pancreas makes to allow cells to use glucose. When your body isn't making or using insulin correctly, you can take man-made insulin to help control your blood sugar. Many types can be used to treat diabetes. They're usually described by how they affect your body. Rapid-acting insulin starts to work within a few minutes and lasts for a couple of hours. Regular- or short-acting insulin takes about 30 minutes to work fully and lasts for 3 to 6 hours. Intermediate-acting insulin takes 2 to 4 hours to work fully. Its effects can last for up to 18 hours. Long-acting insulin can work for an entire day. Your doctor may prescribe more than one type. You might need to take insulin more than once daily, to space your doses throughout the day, and possibly to also take other medicines. How Do I Take It? Many people get insulin into their blood using a needle and syringe, a cartridge system, or pre-filled pen systems. The place on the body where you give yourself the shot may matter. You'll absorb insulin the most consistently when you inject it into your belly. The next best places to inject it are your arms, thighs, and buttocks. Make it a habit to inject insulin at the same general area of your body, but change up the exact injection spot. This helps lessen scarring under the skin. Inhaled insulin, insulin pumps, and a quick-acting insulin device are also available. When Do I Take It? It will depend on the type of insulin you use. You want to time your shot so that the glucose from your food gets into your system at about the same time that the insulin starts to work. This will help your body use the glucose and avoid low blood sugar reactions. For example, if you use a rapid-acting insulin, you'd likely take it 10 minutes before or even with your m Continue reading >>

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

Prediabetes & Insulin Resistance

Prediabetes & Insulin Resistance

What is insulin? Insulin is a hormone made in the pancreas, an organ located behind the stomach. The pancreas contains clusters of cells called islets. Beta cells within the islets make insulin and release it into the blood. Insulin plays a major role in metabolism—the way the body uses digested food for energy. The digestive tract breaks down carbohydrates—sugars and starches found in many foods—into glucose. Glucose is a form of sugar that enters the bloodstream. With the help of insulin, cells throughout the body absorb glucose and use it for energy. Insulin's Role in Blood Glucose Control When blood glucose levels rise after a meal, the pancreas releases insulin into the blood. Insulin and glucose then travel in the blood to cells throughout the body. Insulin helps muscle, fat, and liver cells absorb glucose from the bloodstream, lowering blood glucose levels. Insulin stimulates the liver and muscle tissue to store excess glucose. The stored form of glucose is called glycogen. Insulin also lowers blood glucose levels by reducing glucose production in the liver. In a healthy person, these functions allow blood glucose and insulin levels to remain in the normal range. What happens with insulin resistance? In insulin resistance, muscle, fat, and liver cells do not respond properly to insulin and thus cannot easily absorb glucose from the bloodstream. As a result, the body needs higher levels of insulin to help glucose enter cells. The beta cells in the pancreas try to keep up with this increased demand for insulin by producing more. As long as the beta cells are able to produce enough insulin to overcome the insulin resistance, blood glucose levels stay in the healthy range. Over time, insulin resistance can lead to type 2 diabetes and prediabetes because the bet Continue reading >>

How Insulin Works

How Insulin Works

Insulin is a hormone made by one of the body's organs called the pancreas. Insulin helps your body turn blood sugar (glucose) into energy. It also helps your body store it in your muscles, fat cells, and liver to use later, when your body needs it. After you eat, your blood sugar (glucose) rises. This rise in glucose triggers your pancreas to release insulin into the bloodstream. Insulin travels through the blood to your body's cells. It tells the cells to open up and let the glucose in. Once inside, the cells convert glucose into energy or store it to use later. Without insulin, your body can't use or store glucose for energy. Instead, the glucose stays in your blood. Continue reading >>

What Is Insulin?

What Is Insulin?

Essential for life, the hormone insulin regulates many metabolic processes that provide cells with needed energy. Understanding insulin, what insulin does, and how it affects the body, is important to your overall health. Tucked away behind the stomach is an organ called the pancreas, which produces insulin. Insulin production is regulated based on blood sugar levels and other hormones in the body. In a healthy individual, insulin production and release is a tightly regulated process, allowing the body to balance its metabolic needs. What does insulin do? Insulin allows the cells in the muscles, fat and liver to absorb glucose that is in the blood. The glucose serves as energy to these cells, or it can be converted into fat when needed. Insulin also affects other metabolic processes, such as the breakdown of fat or protein. Problems with insulin production or use The most common problem associated with insulin is diabetes. Diabetes occurs when the body either does not secrete enough insulin or when the body no longer uses the insulin it secretes effectively. Diabetes falls into two categories: Type 1 diabetes occurs when the pancreas cannot produce insulin sufficiently to meet its own needs. This commonly occurs in children, and while an exact cause has not been found, many consider it to be an autoimmune disease. Some symptoms of type 1 diabetes include tiredness, increased urination and thirst, and problems with vision. Type 2 diabetes is more commonly associated with adults and lifestyle choices. People with type 2 diabetes will produce insulin but often not enough for their body's needs. They may also struggle to use the insulin they produce effectively. Patients may not know they have type 2 diabetes until they have an annual checkup, as symptoms tend to be mild un Continue reading >>

Insulin's Role In The Human Body

Insulin's Role In The Human Body

Insulin is a hormone produced by the pancreas that has a number of important functions in the human body, particularly in the control of blood glucose levels and preventing hyperglycemia. It also has an effect on several other areas of the body, including the synthesis of lipids and regulation of enzymatic activity. Insulin and Metabolic Processes The most important role of insulin in the human body is its interaction with glucose to allow the cells of the body to use glucose as energy. The pancreas usually produces more insulin in response to a spike in blood sugar level, for example after eating a meal high in energy. This is because the insulin acts as a “key” to open up the cells in the body and allows the glucose to be used as an energy source. Additionally, when there is excess glucose in the bloodstream, known as hyperglycemia, insulin encourages the storage of glucose as glycogen in the liver, muscle and fat cells. These stores can then be used at a later date when energy requirements are higher. As a result of this, there is less insulin in the bloodstream, and normal blood glucose levels are restored. Insulin stimulates the synthesis of glycogen in the liver, but when the liver is saturated with glycogen, an alternative pathway takes over. This involves the uptake of additional glucose into adipose tissue, leading to the synthesis of lipoproteins. Results Without Insulin In the absence of insulin, the body is not able to utilize the glucose as energy in the cells. As a result, the glucose remains in the bloodstream and can lead to high blood sugar, known as hyperglycemia. Chronic hyperglycemia is characteristic of diabetes mellitus and, if untreated, is associated with severe complications, such as damage to the nervous system, eyes, kidneys and extremitie Continue reading >>

What Is Insulin Resistance?

What Is Insulin Resistance?

Insulin is a hormone produced by the pancreas that helps unlock the body's cells so that sugar (glucose) from the food we eat can be used by the cells for energy. In people with type 2 diabetes, a combination of problems occurs, and scientists aren't really sure which is the chicken and which is the egg. The person's body may not be producing enough insulin to meet their needs, so some glucose can't get into the cells. Glucose remains in the bloodstream, causing high blood glucose levels. In many cases, the person may actually be producing more insulin than one might reasonably expect that person to need to convert the amount of food they've eaten at a meal into energy. Their pancreas is actually working overtime to produce more insulin because the body's cells are resistant to the effects of insulin. Basically the cells, despite the presence of insulin in the bloodstream, don't become unlocked and don't let enough of the glucose in the blood into the cells. Scientists don't know exactly what causes this insulin resistance, and many expect that there are several different defects in the process of unlocking cells that cause insulin resistance. Medications for type 2 diabetes focus on different parts of this insulin-cell interaction to help improve blood glucose control. Some medications stimulate the pancreas to produce more insulin. Others improve how the body uses insulin by working on this insulin resistance. Physical activity also seems to improve the body's ability to use insulin by decreasing insulin resistance, which is why activity is so important in diabetes management. Find more information about diabetes in The Joslin Guide to Diabetes available from the Joslin Online Store. Continue reading >>

Type 2 Diabetes: What Is It?

Type 2 Diabetes: What Is It?

When it comes to your body, you probably spend more time thinking about your hair than your hormones. For some people, though, a problem with a hormone called insulin causes a health condition called type 2 diabetes (pronounced: dye-uh-BEE-tees). Diabetes is a disease that affects how the body uses glucose (pronounced: GLOO-kose), a sugar that is the body's main source of fuel. Your body needs glucose to keep running. Here's how it should work: Glucose from the food gets into your bloodstream. Your pancreas makes a hormone called insulin (pronounced: IN-suh-lin). Insulin helps the glucose get into the body's cells. The pancreas is a long, flat gland in your belly that helps your body digest food. It also makes insulin. Insulin is like a key that opens the doors to the cells of the body. It lets the glucose in. Then the glucose can move out of the blood and into the cells. But if someone has diabetes, either the body can't make insulin or the insulin doesn't work in the body like it should. The glucose can't get into the cells normally, so the blood sugar level gets too high. Lots of sugar in the blood makes people sick if they don't get treatment. There are two major types of diabetes: type 1 and type 2. Each type causes high blood sugar levels in a different way. In type 1 diabetes , the pancreas can't make insulin. The body can still get glucose from food, but the glucose can't get into the cells, where it's needed, and glucose stays in the blood. This makes the blood sugar level very high. With type 2 diabetes, the body still makes insulin. But a person with type 2 diabetes doesn't respond normally to the insulin the body makes. So glucose is less able to enter the cells and do its job of supplying energy. When glucose can't enter the cells in this way, doctors call Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone; a chemical messenger produced in one part of the body to have an action on another. It is a protein responsible for regulating blood glucose levels as part of metabolism.1 The body manufactures insulin in the pancreas, and the hormone is secreted by its beta cells, primarily in response to glucose.1 The beta cells of the pancreas are perfectly designed "fuel sensors" stimulated by glucose.2 As glucose levels rise in the plasma of the blood, uptake and metabolism by the pancreas beta cells are enhanced, leading to insulin secretion.1 Insulin has two modes of action on the body - an excitatory one and an inhibitory one:3 Insulin stimulates glucose uptake and lipid synthesis It inhibits the breakdown of lipids, proteins and glycogen, and inhibits the glucose pathway (gluconeogenesis) and production of ketone bodies (ketogenesis). What is the pancreas? The pancreas is the organ responsible for controlling sugar levels. It is part of the digestive system and located in the abdomen, behind the stomach and next to the duodenum - the first part of the small intestine.4 The pancreas has two main functional components:4,5 Exocrine cells - cells that release digestive enzymes into the gut via the pancreatic duct The endocrine pancreas - islands of cells known as the islets of Langerhans within the "sea" of exocrine tissue; islets release hormones such as insulin and glucagon into the blood to control blood sugar levels. Islets are highly vascularized (supplied by blood vessels) and specialized to monitor nutrients in the blood.2 The alpha cells of the islets secrete glucagon while the beta cells - the most abundant of the islet cells - release insulin.5 The release of insulin in response to elevated glucose has two phases - a first around 5-10 minutes after g Continue reading >>

More in insulin