diabetestalk.net

What Happens First To Excess Glucose In The Blood?

Blood Sugar Control In The Body

Blood Sugar Control In The Body

The human body is amazing, particularly when you get into the intricacies of it. Each part of the body is continually being monitored and everything is simultaneously kept in perfect balance. Among others, one of the things the body monitors and keeps balanced is blood sugar control, that is, the amount of glucose in our blood. Someone with diabetes has problems keeping the glucose balance in the body; it depends on the type of diabetes as to why this is the case. Before we get into any of that, however, we need to be clear on how the body usually controls the blood sugar. It is only once we can comprehend that that we can begin to get into the details of what happens when someone has diabetes. So let’s get the basics down first. Glucose in the Body Glucose is absolutely essential for the running of our body, as it provides a source of energy for our muscles and fat cells to draw upon. The body gets its supply of glucose from the food we eat and we then absorb it into the bloodstream, which can transport it around the body to all the different cells where energy may be needed. The amount of glucose in our blood is very important and our body keeps this under tight control. The reason for this is simple; both too much and too little glucose can be detrimental for the body. We’ll go into more detail later on in the series but for now it is enough to appreciate that both can lead to serious outcomes. It is absolutely normal for the blood glucose levels to vary a little throughout the course of a day. When we’ve just finished eating a meal, the energy from the foods that we absorb causes our blood sugar to rise. The body then recognises this rise and makes adjustments to maintain the balance in the body. Blood Sugar Control The body controls our blood sugar using two Continue reading >>

Suppress Blood Sugar Without Drugs

Suppress Blood Sugar Without Drugs

The research is conclusive—the longer you wait to tame age-related blood sugar increases, the greater your odds of succumbing to diabetes and its associated increased risk of heart attack, stroke, kidney failure, cancer, and blindness.1-3 For the majority of aging individuals,urgent action is needed.1,2 The public has not yet recognized the magnitude of damage inflicted after consumption of what most consider only a moderate amount of starch or sugar. A widely publicized study showed that drinking just one 12-ounce sugar-sweetened soda daily resulted in an 18-22% increased risk of type II diabetes.4 While health-conscious people may avoid sodas, there are so many glucose-spiking foods in our diets that virtually none of us are immune. Hard science reveals that fasting blood sugar above 85 mg/dL is associated with increased risks of death and disease. Unfortunately, most adult glucose levels are well above this range.1,2,5 Aging humans should take assertive steps before eating carbohydrates to impede the absorption of glucose into their bloodstream. Just as important, however, is the need to suppress excess production of glucose in our liver and to improve uptake of blood glucose into our muscle cells as opposed to it being stored as fat. The breaking news for those who want to avoid drugs is the discovery of three plant-derived nutrients that target underlying reasons why 80% of American adults today have higher than optimal glucose levels.6 The July 3, 2013 issue of the Journal of the American Medical Association (JAMA) examined the impact of fructose on human health.7 High-fructose corn syrup represents over 40% of caloric sweeteners added to foods and beverages. It’s often the sole caloric sweetener in soft drinks in the United States.8 The digestion and metaboli Continue reading >>

A&p Chapter 25 Flashcards | Quizlet

A&p Chapter 25 Flashcards | Quizlet

water, carbohydrates, proteins, lipids, vitamins, minerals Which nutrients are required in large quantities? carbohydrates, lipids, proteins, and water Which nutrients are required in small quantities? Why do essential nutrients have to be ingested? because the body cannot manufacture them itself or is unable to manufacture adequate amounts What is the energy necessary to raise the temperature of 1 gram of water by 1 degree Celsius? 1 kilocalorie is equal to how many calories? How many kilocalories do a gram of fat, carbs, and protein yield? Glucose, fructose, and galactose are what type of carbs? Sucrose, maltose, and lactose are what type of carbs? Starch, glycogen, and cellulose are what type of carbs? Polysaccharides and disaccharides are converted to _____________ True or False: during digestion, polysaccharides and disaccharides are broken down into monosaccharides before absorption converts monosaccharides into glucose which is then used as an energy source to produce ATP What happens to excess glucose in the body? converted to glycogen and stored in muscles and liver cells What happens to excess glucose beyond storage in muscles and liver cells? triglycerides, cholesterol, linoleic acids, phospholipids forms other molecules (hormones, steriods, bile salts) and is part of the membrane What type of lipids construct myelin sheath? What is the difference between essential and non essential amino acids? What are the functions of protein in the body? protection, regulation, structure, muscle contraction, transportation, and receptors as a coenzyme (combine with an enzyme and make it functional) What is the difference between lipid-soluble and water-soluble vitamins? water--remain in the body for a short time then are excreted Vitamin A, D, E, and K are examples of wh Continue reading >>

15 Ways High Blood Sugar Affects Your Body

15 Ways High Blood Sugar Affects Your Body

High blood sugar symptoms Glucose, or sugar, is the fuel that powers cells throughout the body. Blood levels of this energy source ebb and flow naturally, depending what you eat (and how much), as well as when you eat it. But when something goes wrong—and cells aren't absorbing the glucose—the resulting high blood sugar damages nerves, blood vessels, and organs, setting the stage for dangerous complications. Normal blood-sugar readings typically fall between 60 mg/dl and 140 mg/dl. A blood test called a hemoglobin A1c measures average blood sugar levels over the previous three months. A normal reading is below 5.7% for people without diabetes. An excess of glucose in the bloodstream, or hyperglycemia, is a sign of diabetes. People with type 1 diabetes don’t make insulin, the hormone needed to ferry sugar from the bloodstream into cells. Type 2 diabetes means your body doesn’t use insulin properly and you can end up with too much or too little insulin. Either way, without proper treatment, toxic amounts of sugar can build up in the bloodstream, wreaking havoc head to toe. That’s why it’s so important to get your blood sugar levels in check. “If you keep glucose levels near normal, you reduce the risk of diabetes complications,” says Robert Ratner, MD, chief scientific and medical officer of the American Diabetes Association. Here’s a rundown of the major complications and symptoms of high blood sugar. No symptoms at all Often, high blood sugar causes no (obvious) symptoms at all, at least at first. About 29 million people in the U.S. have diabetes, but one in four has no idea. Another 86 million have higher-than-normal blood sugar levels, but not high enough to be diagnosed with type 2 diabetes. That's why it’s a good idea to get your blood sugar test Continue reading >>

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

As mouth-watering as a sugar-laden sundae or icing-topped cupcake is, we should all know by now that sugar isn't exactly healthy. In fact, it may be one of the worst things you can eat (that is, if you're trying to live a long, healthy life). One study from UC San Francisco actually found that drinking sugary drinks like soda can age your body on a cellular level as quickly as cigarettes. The way the sweet stuff impacts your body is way more complex than just causing weight gain. In fact, when you eat a ton of sugar, almost every part of your body feels the strain—and that's bad news for your health in both the short term and especially the long term. From an initial insulin spike to upping your chances of kidney failure down the road, this is what really happens in your body when you load up on sugar. Your brain responds to sugar the same way it would to cocaine. Eating sugar creates a surge of feel-good brain chemicals dopamine and serotonin. So does using certain drugs, like cocaine. And just like a drug, your body craves more after the initial high. "You then become addicted to that feeling, so every time you eat it you want to eat more," explains Gina Sam, M.D., M.P.H., director of the Gastrointestinal Motility Center at The Mount Sinai Hospital. Your insulin spikes to regulate your blood sugar. "Once you eat glucose, your body releases insulin, a hormone from your pancreas," Dr. Sam explains. The insulin's job is to absorb the excess glucose in the blood and stabilize sugar levels. And a little while later you get that familiar sugar crash. Once the insulin does its job, your blood sugar drops again. Which means you've just experienced a sugar rush, and then a drastic drop, leaving you feeling drained. "That's the feeling you get when you've gone to the buffet a Continue reading >>

Can The Human Body Turn Excess Glucose Into Proteins?

Can The Human Body Turn Excess Glucose Into Proteins?

Answered Apr 19, 2016 Author has 8.4k answers and 5.9m answer views No. Glucose is absorbed into our living cells via insulin for instant energy and any excess energy will be first stored in our liver and muscle glycogen then once your glycogen storages are full, they will be converted into fatty acids. Glucose is hydrocarbon chain while amino acids have nitride in the backbone. You can't create nitride out of nowhere. Answered Dec 26, 2017 Author has 1.5k answers and 370.1k answer views Yes. Glucose is the starting point for the synthesis of the nonessential amino acids, which are then incorporated into proteins. A simple pathway to illustrate the point is glucose pyruvate alanine. The last step involves transamination, so you need glucose plus nitrogen from the bodys nitrogen pool. Excess glucose can not be directly converted into protein as it is converted into glycogen and beyond its storage of glycogen in liver and muscles cells into fats. But glucose involved in metabolic pathway indirectly contribute to protein formation. Proteins are made up of amino acids. Amino acids has amino group and a carbon skeleton. During amino acid synthesis amino group for most of amino acid is derived from glutamate but carbon skeletons are derived from commonly available metabolic intermediates of glycolysis, the citric acid cycle, or the pentosr phosphate pathway. The primary carbon sources are glycerate-3-phosphate, pyruvate, PEP , alpha ketoglutarate, oxaloacetate, ribose-5-phosphate, phosphoenolpyruvate and erythrose-4-phosphate. Most of body usable carbohydrates are converted to glucose and glucose undergo glycolysis followed by TCA or Pentose phosphate pathway and above mentioned products are formed during that. The body does to some extent indirectly convert glucose into pro Continue reading >>

High Blood Sugar Symptoms

High Blood Sugar Symptoms

If you’ve had diabetes for any length of time at all, you’ve probably seen lists of the signs and symptoms of high blood glucose dozens of times. Doctors and diabetes educators hand them out. Hundreds of websites reprint them. Most diabetes books list them. You likely know some of the items on the list by heart: thirst, frequent urination, blurry vision, slow healing of cuts, and more. But have you ever stopped to wonder why these symptoms occur? How does high blood glucose cause frequent urination, make your vision go blurry, or cause all of those other things to happen? Here are some answers to explain what’s going on in your body when you have high blood glucose. Setting the stage for high blood glucose High blood glucose (called hyperglycemia by medical professionals) is the defining characteristic of all types of diabetes. It happens when the body can no longer maintain a normal blood glucose level, either because the pancreas is no longer making enough insulin, or because the body’s cells have become so resistant to insulin that the pancreas cannot keep up, and glucose is accumulating in the bloodstream rather than being moved into the cells. What is high blood sugar? Blood glucose is commonly considered too high if it is higher than 130 mg/dl before a meal or higher than 180 mg/dl two hours after the first bite of a meal. However, most of the signs and symptoms of high blood glucose don’t appear until the blood glucose level is higher than 250 mg/dl. Some of the symptoms have a rapid onset, while others require a long period of high blood glucose to set in. It’s important to note that individuals differ in their sensitivity to the effects of high blood glucose: Some people feel symptoms more quickly or more strongly than others. But each sign or sympt Continue reading >>

How Is Excess Glucose Stored?

How Is Excess Glucose Stored?

The human body has an efficient and complex system of storing and preserving energy. Glucose is a type of sugar that the body uses for energy. Glucose is the product of breaking down carbohydrates into their simplest form. Carbohydrates should make up approximately 45 to 65 percent of your daily caloric intake, according to MayoClinic.com. Video of the Day Glucose is a simple sugar found in carbohydrates. When more complex carbohydrates such as polysaccharides and disaccharides are broken down in the stomach, they break down into the monosaccharide glucose. Carbohydrates serve as the primary energy source for working muscles, help brain and nervous system functioning and help the body use fat more efficiently. Function of Glucose Once carbohydrates are absorbed from food, they are carried to the liver for processing. In the liver, fructose and galactose, the other forms of sugar, are converted into glucose. Some glucose gets sent to the bloodstream while the rest is stored for later energy use. Once glucose is inside the liver, glucose is phosphorylated into glucose-6-phosphate, or G6P. G6P is further metabolized into triglycerides, fatty acids, glycogen or energy. Glycogen is the form in which the body stores glucose. The liver can only store about 100 g of glucose in the form of glycogen. The muscles also store glycogen. Muscles can store approximately 500 g of glycogen. Because of the limited storage areas, any carbohydrates that are consumed beyond the storage capacity are converted to and stored as fat. There is practically no limit on how many calories the body can store as fat. The glucose stored in the liver serves as a buffer for blood glucose levels. Therefore, if the blood glucose levels start to get low because you have not consumed food for a period of time Continue reading >>

What Happens To Excess Glucose?

What Happens To Excess Glucose?

Science Biology When the body detects increased levels of glucose or amino acids in the small intestine, beta cells in the pancreas secrete a hormone called insulin that promotes the absorption of glucose by cells in the body. Insulin is also responsible for signalling the conversion of glucose into glycogen. Another method the body has for handling excess glucose is to eliminate some of the glucose in the urine. In most cases, the glucose that makes its way to the urine is reabsorbed through the sodium-glucose cotransporter 2 channels in the kidney nephrons. These transporters reabsorb glucose and send it back into the bloodstream. If these transporters become saturated by high levels of glucose, the excess glucose is excreted in the urine. Certain medications, like the anti-diabetic drug canagliflozin, are specifically designed to inhibit the action of SGLT-2 and promote glucose loss. One of the hallmark symptoms of diabetes is glucose in the urine. Learn more about Biology Continue reading >>

174_diabetes Type 2: Module 04

174_diabetes Type 2: Module 04

Regulation of glucose in the body is done autonomically and constantly throughout each minute of the day. Normal BG levels should be between 60 and 140 mg/dL in order to supply cells of the body with its required energy. Brain cells dont require insulin to drive glucose into neurons; however, there must still be normal amounts available. Too little glucose, called hypoglycemia, starves cells, and too much glucose (hyperglycemia)creates a sticky, paralyzing effect on cells. Euglycemia, or blood sugar within the normal range, is naturally ideal for the bodys functions. A delicate balance between hormones of the pancreas, intestines, brain, and even adrenals is required to maintain normal BG levels. To appreciate the pathology of diabetes, it is important to understand how the body normally uses food for energy. Glucose, fats, and proteins are the foods that fuel the body. Knowing how the pancreatic, digestive, and intestinal hormones are involved in food metabolism can help you understand normal physiology and how problems develop with diabetes. Throughout the body, cells use glucose as a source of immediate energy. To keep the body running smoothly, a continuous concentration of 60 to 100 mg/dL of glucose in blood plasma is needed. During exercise or stress the body needs a higher concentration because muscles require glucose for energy (Basu et al., 2009). Of the three fuels for the body, glucose is preferred because it produces both energy and water through the Krebs cycle and aerobic metabolism. The body can also use protein and fat; however, their breakdown creates ketoacids, making the body acidic, which is not its optimal state. Excess of ketoacids can produce metabolic acidosis. Functioning body tissues continuously absorb glucose from the bloodstream. For people Continue reading >>

How Does Eating Affect Your Blood Sugar?

How Does Eating Affect Your Blood Sugar?

Part 1 of 8 What is blood sugar? Blood sugar, also known as blood glucose, comes from the food you eat. Your body creates blood sugar by digesting some food into a sugar that circulates in your bloodstream. Blood sugar is used for energy. The sugar that isn’t needed to fuel your body right away gets stored in cells for later use. Too much sugar in your blood can be harmful. Type 2 diabetes is a disease that is characterized by having higher levels of blood sugar than what is considered within normal limits. Unmanaged diabetes can lead to problems with your heart, kidneys, eyes, and blood vessels. The more you know about how eating affects blood sugar, the better you can protect yourself against diabetes. If you already have diabetes, it’s important to know how eating affects blood sugar. Part 2 of 8 Your body breaks down everything you eat and absorbs the food in its different parts. These parts include: carbohydrates proteins fats vitamins and other nutrients The carbohydrates you consume turn into blood sugar. The more carbohydrates you eat, the higher the levels of sugar you will have released as you digest and absorb your food. Carbohydrates in liquid form consumed by themselves are absorbed more quickly than those in solid food. So having a soda will cause a faster rise in your blood sugar levels than eating a slice of pizza. Fiber is one component of carbohydrates that isn’t converted into sugar. This is because it can’t be digested. Fiber is important for health, though. Protein, fat, water, vitamins, and minerals don’t contain carbohydrates. These components won’t affect your blood sugar levels. If you have diabetes, your carbohydrate intake is the most important part of your diet to consider when it comes to managing your blood sugar levels. Part 3 Continue reading >>

The Liver And Blood Glucose Levels

The Liver And Blood Glucose Levels

Tweet Glucose is the key source of energy for the human body. Supply of this vital nutrient is carried through the bloodstream to many of the body’s cells. The liver produces, stores and releases glucose depending on the body’s need for glucose, a monosaccharide. This is primarily indicated by the hormones insulin - the main regulator of sugar in the blood - and glucagon. In fact, the liver acts as the body’s glucose reservoir and helps to keep your circulating blood sugar levels and other body fuels steady and constant. How the liver regulates blood glucose During absorption and digestion, the carbohydrates in the food you eat are reduced to their simplest form, glucose. Excess glucose is then removed from the blood, with the majority of it being converted into glycogen, the storage form of glucose, by the liver’s hepatic cells via a process called glycogenesis. Glycogenolysis When blood glucose concentration declines, the liver initiates glycogenolysis. The hepatic cells reconvert their glycogen stores into glucose, and continually release them into the blood until levels approach normal range. However, when blood glucose levels fall during a long fast, the body’s glycogen stores dwindle and additional sources of blood sugar are required. To help make up this shortfall, the liver, along with the kidneys, uses amino acids, lactic acid and glycerol to produce glucose. This process is known as gluconeogenesis. The liver may also convert other sugars such as sucrose, fructose, and galactose into glucose if your body’s glucose needs not being met by your diet. Ketones Ketones are alternative fuels that are produced by the liver from fats when sugar is in short supply. When your body’s glycogen storage runs low, the body starts conserving the sugar supplies fo Continue reading >>

Blood Sugar Or Blood Glucose: What Does It Do?

Blood Sugar Or Blood Glucose: What Does It Do?

Blood sugar, or blood glucose, is sugar that the bloodstream carries to all the cells in the body to supply energy. Blood sugar or blood glucose measurements represent the amount of sugar being transported in the blood during one instant. The sugar comes from the food we eat. The human body regulates blood glucose levels so that they are neither too high nor too low. The blood's internal environment must remain stable for the body to function. This balance is known as homeostasis. The sugar in the blood is not the same as sucrose, the sugar in the sugar bowl. There are different kinds of sugar. Sugar in the blood is known as glucose. Blood glucose levels change throughout the day. After eating, levels rise and then settle down after about an hour. They are at their lowest point before the first meal of the day, which is normally breakfast. How does sugar get into the body's cells? When we eat carbohydrates, such as sugar, or sucrose, our body digests it into glucose, a simple sugar that can easily convert to energy. The human digestive system breaks down carbohydrates from food into various sugar molecules. One of these sugars is glucose, the body's main source of energy. The glucose goes straight from the digestive system into the bloodstream after food is consumed and digested. But glucose can only enter cells if there is insulin in the bloodstream too. Without insulin, the cells would starve. After we eat, blood sugar concentrations rise. The pancreas releases insulin automatically so that the glucose enters cells. As more and more cells receive glucose, blood sugar levels return to normal again. Excess glucose is stored as glycogen, or stored glucose, in the liver and the muscles. Glycogen plays an important role in homeostasis, because it helps our body function du Continue reading >>

What Happens To Unburned Carbohydrates?

What Happens To Unburned Carbohydrates?

Your body uses mostly carbohydrates as well as fats for energy. Because the body doesn’t store carbs efficiently, they’re used first. Carbohydrates turn into glucose, which your body burns immediately or converts to glycogen to be stored in the muscles and liver for between meals. If you eat more calories from carbs or other sources than your body can use, the cells store the excess as fat. Of the three major nutrients -- carbohydrates, fat and protein -- the body burns carbs first for energy because they can’t be stored in great quantities. The carbohydrates in food get broken down into glucose, which moves into the small intestine, then the liver and into the blood. As blood sugar rises, the pancreas produces insulin, which signals the cells to take up sugar. Whatever glucose the cells don’t need immediately for energy is stored in the liver and muscles as glycogen. When the blood sugar levels fall -- such as between meals -- the liver releases glycogen. This cycle keeps your body supplied with a steady source of fuel. Insulin Resistance If you have insulin resistance or diabetes, the sugar-insulin cycle doesn’t work properly, leading to too much sugar and insulin circulating in the blood until eventually your body doesn’t produce enough insulin or is resistant to its effects. This is why people with diabetes or prediabetes often track the carbs they eat; eating too many carbohydrates, especially sugars and refined starches, can cause blood sugar and/or insulin to spike to potentially dangerous levels in people with diabetes. How Carbs Turn Into Fat When you eat too many calories, especially in the form of sugars and quickly burned starches, your body may reach its storage capacity for glycogen. The liver converts the stored sugars into triglycerides, or f Continue reading >>

Insulin's Role In The Human Body

Insulin's Role In The Human Body

Insulin is a hormone produced by the pancreas that has a number of important functions in the human body, particularly in the control of blood glucose levels and preventing hyperglycemia. It also has an effect on several other areas of the body, including the synthesis of lipids and regulation of enzymatic activity. Insulin and Metabolic Processes The most important role of insulin in the human body is its interaction with glucose to allow the cells of the body to use glucose as energy. The pancreas usually produces more insulin in response to a spike in blood sugar level, for example after eating a meal high in energy. This is because the insulin acts as a “key” to open up the cells in the body and allows the glucose to be used as an energy source. Additionally, when there is excess glucose in the bloodstream, known as hyperglycemia, insulin encourages the storage of glucose as glycogen in the liver, muscle and fat cells. These stores can then be used at a later date when energy requirements are higher. As a result of this, there is less insulin in the bloodstream, and normal blood glucose levels are restored. Insulin stimulates the synthesis of glycogen in the liver, but when the liver is saturated with glycogen, an alternative pathway takes over. This involves the uptake of additional glucose into adipose tissue, leading to the synthesis of lipoproteins. Results Without Insulin In the absence of insulin, the body is not able to utilize the glucose as energy in the cells. As a result, the glucose remains in the bloodstream and can lead to high blood sugar, known as hyperglycemia. Chronic hyperglycemia is characteristic of diabetes mellitus and, if untreated, is associated with severe complications, such as damage to the nervous system, eyes, kidneys and extremitie Continue reading >>

More in insulin