diabetestalk.net

Insulin Is Used To Regulate Sugar Where?

8 Tips To Avoid Blood Sugar Dips And Spikes

8 Tips To Avoid Blood Sugar Dips And Spikes

If you have type 2 diabetes and your blood sugar levels are racing up and down like a roller coaster, it's time to get off the ride. Big swings in your blood sugar can make you feel lousy. But even if you aren't aware of them, they can still increase your risk for a number of serious health problems. By making simple but specific adjustments to your lifestyle and diet, you can gain better blood-sugar control. Your body uses the sugar, also known as glucose, in the foods you eat for energy. Think of it as a fuel that keeps your body moving throughout the day. Blood Sugar Highs and Lows Type 2 diabetes decreases the body’s production of insulin, which is a hormone that regulates blood sugar. Without enough insulin, sugar builds up in the blood and can damage nerves and blood vessels. This increase of blood sugar also increases your risk for heart disease and stroke. Over time, high blood sugar, also known as hyperglycemia, can lead to more health problems, including kidney failure and blindness. "Keeping blood sugar stable can help prevent the long-term consequences of fluctuations," says Melissa Li-Ng, MD, an endocrinologist at the Cleveland Clinic in Ohio. Dr. Li-Ng explains that high blood sugar can cause a number of symptoms that include: Fatigue Increased thirst Blurry vision Frequent urination It's also important to know that you can have high blood sugar and still feel fine, but your body can still suffer damage, Li-Ng says. Symptoms of high blood sugar typically develop at levels above 200 milligrams per deciliter (mg/dL). "You can have high blood sugar that's between 150 and 199 and feel perfectly fine," Li-Ng says. Over time, your body can also get used to chronically high blood sugar levels, so you don’t feel the symptoms, she says. On the flip side, if you Continue reading >>

Blood Sugar Regulation

Blood Sugar Regulation

Most cells in the human body use the sugar called glucose as their major source of energy. Glucose molecules are broken down within cells in order to produce adenosine triphosphate (ATP) molecules, energy-rich molecules that power numerous cellular processes. Glucose molecules are delivered to cells by the circulating blood and therefore, to ensure a constant supply of glucose to cells, it is essential that blood glucose levels be maintained at relatively constant levels. Level constancy is accomplished primarily through negative feedback systems, which ensure that blood glucose concentration is maintained within the normal range of 70 to 110 milligrams (0.0024 to 0.0038 ounces) of glucose per deciliter (approximately one-fifth of a pint) of blood. Negative feedback systems are processes that sense changes in the body and activate mechanisms that reverse the changes in order to restore conditions to their normal levels. Negative feedback systems are critically important in homeostasis, the maintenance of relatively constant internal conditions. Disruptions in homeostasis lead to potentially life-threatening situations. The maintenance of relatively constant blood glucose levels is essential for the health of cells and thus the health of the entire body. Major factors that can increase blood glucose levels include glucose absorption by the small intestine (after ingesting a meal) and the production of new glucose molecules by liver cells. Major factors that can decrease blood glucose levels include the transport of glucose into cells (for use as a source of energy or to be stored for future use) and the loss of glucose in urine (an abnormal event that occurs in diabetes mellitus). Insulin and Glucagon In a healthy person, blood glucose levels are restored to normal level Continue reading >>

How To Stabilize Your Blood Sugar

How To Stabilize Your Blood Sugar

Life with type 2 diabetes can sometimes seem like an hourly or even minute-by-minute effort to stabilize your blood sugar. All of the recommendations and drugs you’ve been given as part of your type 2 diabetes treatment plan are intended to help you reach — and keep — healthy blood sugar levels most of the time. But doctors are learning that to control type 2 diabetes well, better information about why blood sugar matters and how to manage it is essential. The Facts About Diabetes and Blood Sugar As the American Diabetes Association (ADA) explains, your body needs sugar (glucose) for fuel, and there’s a fairly complicated process that makes it possible for your body to use that sugar. Insulin, which is made by the pancreas, is the hormone that enables the cells in your body to take advantage of sugar. Type 2 diabetes occurs when your body isn’t able to remove sugar from your blood. This can happen if your body stops being sensitive to insulin or if it starts to respond in a delayed or exaggerated way to changes in your blood sugar. Diabetes is signaled by an elevated blood sugar level of more than 126 milligrams per deciliter (mg/dL) for a fasting blood test, or more than 200 mg/dL at any time during the day. It can also be indicated by a hemoglobin A1C level of 6.5 percent or higher, a measure of the percentage of blood sugar attached to hemoglobin in the blood during the past two to three months. (Hemoglobin is a protein in red blood cells that transports oxygen throughout the body. So an A1C of 6.5 means that 6.5 percent of your red blood cells have sugar attached to them.) Unchecked high blood sugar gradually damages the blood vessels in your body. Over the long term, this slow, progressive harm can lead to a dangerous loss of sensation in your legs and fe Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

'smart' Insulin Beats The Regular Kind In Diabetic Mice

'smart' Insulin Beats The Regular Kind In Diabetic Mice

'Smart' insulin beats the regular kind in diabetic mice A lab-made insulin molecule can sense and regulate blood sugar levels in a mouse model of diabetes, according to a study published in Proceedings of the National Academy of Sciences today. Even though the study took place in mice, the finding is pretty significant; it's the first time researchers have shown that a tweaked version of insulin can regulate itself in a living animal. If the finding translates to humans, it could lower the amount of insulin injections required by people with diabetes and prevent some of the dangerous complications that injecting too much insulin can cause. "Right now, all of the insulin that a patient takes is ‘dumb.'" Over 29 million people in the US suffer from some form diabetes, a condition in which people either lack the insulin necessary to regulate blood sugar, produce too little insulin, or make  ineffective insulin. People with diabetes regulate their blood sugar levels by injecting insulin, which allows the sugar in the blood to be absorbed into skeletal muscles and fat tissues. But this means continuous monitoring of blood sugar levels, and adherence to a specific diet. And unfortunately, even when those guidelines are followed precisely, patients can still experience serious complications. "Right now, all of the insulin that a patient takes is ‘dumb,’ in a way," says Daniel Anderson, a molecular geneticist at the Harvard–MIT Division of Health Sciences and Technology and a co-author of the study. The molecules do their job whether blood sugar is high or low. That means that insulin-injecting patients run the risk of hypoglycemia if their blood sugar is low when the insulin is in their system — and that means serious consequences , like passing out, seizures, and Continue reading >>

Insulin Administration

Insulin Administration

Insulin is necessary for normal carbohydrate, protein, and fat metabolism. People with type 1 diabetes mellitus do not produce enough of this hormone to sustain life and therefore depend on exogenous insulin for survival. In contrast, individuals with type 2 diabetes are not dependent on exogenous insulin for survival. However, over time, many of these individuals will show decreased insulin production, therefore requiring supplemental insulin for adequate blood glucose control, especially during times of stress or illness. An insulin regimen is often required in the treatment of gestational diabetes and diabetes associated with certain conditions or syndromes (e.g., pancreatic diseases, drug- or chemical-induced diabetes, endocrinopathies, insulin-receptor disorders, certain genetic syndromes). In all instances of insulin use, the insulin dosage must be individualized and balanced with medical nutrition therapy and exercise. This position statement addresses issues regarding the use of conventional insulin administration (i.e., via syringe or pen with needle and cartridge) in the self-care of the individual with diabetes. It does not address the use of insulin pumps. (See the American Diabetes Association’s position statement “Continuous Subcutaneous Insulin Infusion” for further discussion on this subject.) INSULIN Insulin is obtained from pork pancreas or is made chemically identical to human insulin by recombinant DNA technology or chemical modification of pork insulin. Insulin analogs have been developed by modifying the amino acid sequence of the insulin molecule. Insulin is available in rapid-, short-, intermediate-, and long-acting types that may be injected separately or mixed in the same syringe. Rapid-acting insulin analogs (insulin lispro and insulin a Continue reading >>

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

What Organ Regulates The Amount Of Glucose In The Bloodstream?

What Organ Regulates The Amount Of Glucose In The Bloodstream?

Glucose in the bloodstream provides the primary fuel for all body tissues. Blood glucose levels are highest during the digestive period after a meal. Your blood sugar is lowest when the stomach and intestines are empty. Under normal circumstances, the body tightly controls the amount of insulin in your blood. An organ called the pancreas, which is tucked behind the stomach releases the hormones insulin and glucagon to regulate blood sugar levels. Blood sugar regulation is crucial because high and low blood glucose can cause health problems. The pancreas is an elongated organ wide on one end and slender on the other end and measures about 25 centimeters in length. It has dual functions: it releases digestive enzymes, which plays a role in digestion, and it secretes hormones. Prevents High Blood Glucose Insulin plays an integral role in preventing high blood sugar. After you eat a meal and your blood-glucose rises, your pancreas senses your blood-sugar level. When the glucose in your bloodstream becomes high, the pancreas releases insulin into your bloodstream. A small clump of pancreatic cells called the ''islets of Langerhans,'' manufacture insulin. Once the insulin is in your bloodstream, it allows your cells to absorb and use glucose as a fuel source. Mediates Low Blood Sugar When you consume more carbohydrate than your body needs at the time, your body stores the extra glucose as glycogen in the liver. The pancreas continuously monitors your blood sugar levels. When glucose is low, the pancreas releases the hormone glucagon. The glucagon triggers the liver to break down glycogen and converts it back to glucose. The stored glucose enters the bloodstream and raises blood-glucose levels. This allows the body to keep blood sugar levels stable in between meals. Blood Gluc Continue reading >>

Normal Regulation Of Blood Glucose

Normal Regulation Of Blood Glucose

The human body wants blood glucose (blood sugar) maintained in a very narrow range. Insulin and glucagon are the hormones which make this happen. Both insulin and glucagon are secreted from the pancreas, and thus are referred to as pancreatic endocrine hormones. The picture on the left shows the intimate relationship both insulin and glucagon have to each other. Note that the pancreas serves as the central player in this scheme. It is the production of insulin and glucagon by the pancreas which ultimately determines if a patient has diabetes, hypoglycemia, or some other sugar problem. In this Article Insulin Basics: How Insulin Helps Control Blood Glucose Levels Insulin and glucagon are hormones secreted by islet cells within the pancreas. They are both secreted in response to blood sugar levels, but in opposite fashion! Insulin is normally secreted by the beta cells (a type of islet cell) of the pancreas. The stimulus for insulin secretion is a HIGH blood glucose...it's as simple as that! Although there is always a low level of insulin secreted by the pancreas, the amount secreted into the blood increases as the blood glucose rises. Similarly, as blood glucose falls, the amount of insulin secreted by the pancreatic islets goes down. As can be seen in the picture, insulin has an effect on a number of cells, including muscle, red blood cells, and fat cells. In response to insulin, these cells absorb glucose out of the blood, having the net effect of lowering the high blood glucose levels into the normal range. Glucagon is secreted by the alpha cells of the pancreatic islets in much the same manner as insulin...except in the opposite direction. If blood glucose is high, then no glucagon is secreted. When blood glucose goes LOW, however, (such as between meals, and during Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone; a chemical messenger produced in one part of the body to have an action on another. It is a protein responsible for regulating blood glucose levels as part of metabolism.1 The body manufactures insulin in the pancreas, and the hormone is secreted by its beta cells, primarily in response to glucose.1 The beta cells of the pancreas are perfectly designed "fuel sensors" stimulated by glucose.2 As glucose levels rise in the plasma of the blood, uptake and metabolism by the pancreas beta cells are enhanced, leading to insulin secretion.1 Insulin has two modes of action on the body - an excitatory one and an inhibitory one:3 Insulin stimulates glucose uptake and lipid synthesis It inhibits the breakdown of lipids, proteins and glycogen, and inhibits the glucose pathway (gluconeogenesis) and production of ketone bodies (ketogenesis). What is the pancreas? The pancreas is the organ responsible for controlling sugar levels. It is part of the digestive system and located in the abdomen, behind the stomach and next to the duodenum - the first part of the small intestine.4 The pancreas has two main functional components:4,5 Exocrine cells - cells that release digestive enzymes into the gut via the pancreatic duct The endocrine pancreas - islands of cells known as the islets of Langerhans within the "sea" of exocrine tissue; islets release hormones such as insulin and glucagon into the blood to control blood sugar levels. Islets are highly vascularized (supplied by blood vessels) and specialized to monitor nutrients in the blood.2 The alpha cells of the islets secrete glucagon while the beta cells - the most abundant of the islet cells - release insulin.5 The release of insulin in response to elevated glucose has two phases - a first around 5-10 minutes after g Continue reading >>

The Role Of Insulin In The Body

The Role Of Insulin In The Body

Tweet Insulin is a hormone which plays a key role in the regulation of blood glucose levels. A lack of insulin, or an inability to adequately respond to insulin, can each lead to the development of the symptoms of diabetes. In addition to its role in controlling blood sugar levels, insulin is also involved in the storage of fat. Insulin is a hormone which plays a number of roles in the body’s metabolism. Insulin regulates how the body uses and stores glucose and fat. Many of the body’s cells rely on insulin to take glucose from the blood for energy. Insulin and blood glucose levels Insulin helps control blood glucose levels by signaling the liver and muscle and fat cells to take in glucose from the blood. Insulin therefore helps cells to take in glucose to be used for energy. If the body has sufficient energy, insulin signals the liver to take up glucose and store it as glycogen. The liver can store up to around 5% of its mass as glycogen. Some cells in the body can take glucose from the blood without insulin, but most cells do require insulin to be present. Insulin and type 1 diabetes In type 1 diabetes, the body produces insufficient insulin to regulate blood glucose levels. Without the presence of insulin, many of the body’s cells cannot take glucose from the blood and therefore the body uses other sources of energy. Ketones are produced by the liver as an alternative source of energy, however, high levels of the ketones can lead to a dangerous condition called ketoacidosis. People with type 1 diabetes will need to inject insulin to compensate for their body’s lack of insulin. Insulin and type 2 diabetes Type 2 diabetes is characterised by the body not responding effectively to insulin. This is termed insulin resistance. As a result the body is less able to t Continue reading >>

How The Body Controls Blood Sugar - Topic Overview

How The Body Controls Blood Sugar - Topic Overview

The bloodstream carries glucose-a type of sugar produced from the digestion of carbohydrates and other foods-to provide energy to cells throughout the body. Unused glucose is stored mainly in the liver as glycogen. Insulin, glucagon, and other hormone levels rise and fall to keep blood sugar in a normal range. Too little or too much of these hormones can cause blood sugar levels to fall too low (hypoglycemia) or rise too high (hyperglycemia). Normally, blood glucose levels increase after you eat a meal. When blood sugar rises, cells in the pancreas release insulin, causing the body to absorb glucose from the blood and lowering the blood sugar level to normal. When blood sugar drops too low, the level of insulin declines and other cells in the pancreas release glucagon, which causes the liver to turn stored glycogen back into glucose and release it into the blood. This brings blood sugar levels back up to normal. Continue reading >>

Diabetes Treatment: Using Insulin To Manage Blood Sugar

Diabetes Treatment: Using Insulin To Manage Blood Sugar

Understanding how insulin affects your blood sugar can help you better manage your condition. Insulin therapy is often an important part of diabetes treatment. Understand the key role insulin plays in managing your blood sugar, and the goals of insulin therapy. What you learn can help you prevent diabetes complications. The role of insulin in the body It may be easier to understand the importance of insulin therapy if you understand how insulin normally works in the body and what happens when you have diabetes. Regulate sugar in your bloodstream. The main job of insulin is to keep the level of glucose in the bloodstream within a normal range. After you eat, carbohydrates break down into glucose, a sugar that serves as a primary source of energy, and enters the bloodstream. Normally, the pancreas responds by producing insulin, which allows glucose to enter the tissues. Storage of excess glucose for energy. After you eat — when insulin levels are high — excess glucose is stored in the liver in the form of glycogen. Between meals — when insulin levels are low — the liver releases glycogen into the bloodstream in the form of glucose. This keeps blood sugar levels within a narrow range. If your pancreas secretes little or no insulin (type 1 diabetes), or your body doesn't produce enough insulin or has become resistant to insulin's action (type 2 diabetes), the level of glucose in your bloodstream increases because it's unable to enter cells. Left untreated, high blood glucose can lead to complications such as blindness, nerve damage (neuropathy) and kidney damage. The goals of insulin therapy If you have type 1 diabetes, insulin therapy replaces the insulin your body is unable to produce. Insulin therapy is sometimes needed for type 2 diabetes and gestational diabete Continue reading >>

Oral Treatments To Control Blood Sugar

Oral Treatments To Control Blood Sugar

When are oral medicines used? In type 1 diabetes (insulin-dependent diabetes), the cells in the pancreas that produce insulin are progressively destroyed by an immune reaction, stopping the production of insulin. Insulin replacement treatment is therefore needed for life, because we cannot make the beta cells in the pancreas work again to produce insulin. Insulin can't be taken in tablet form, because it is broken down in the digestive system. This destroys its effect. Insulin is given by injection. Type 2 diabetes Type 2 diabetes (non-insulin dependent diabetes) is different because the pancreas still produces insulin. Instead, problems are caused because: insulin is produced inefficiently in response to surges of blood sugar, eg following a meal the insulin produced gets less effective at controlling blood sugar, because the cells in the body become increasingly resistant to it. This is called 'insulin resistance'. Treatment for type 2 diabetes involves either improving insulin release in response to meals, or reducing the resistance of the body cells to the effect of insulin. Diet and exercise are the first treatments used to improve insulin resistance in type 2 diabetes. If blood sugar is not adequately controlled after at least three months of healthy eating and increasing exercise, oral medicines are used. What oral medicines are used in type 2 diabetes? There are various types of oral medicine that can be used to control blood sugar in type 2 diabetes. Glitazones (sometimes called thiazolidinediones): pioglitazone (Actos) is now the only one available, following the withdrawal of rosiglitazone (Avandia) in October 2010. Pioglitazone is also available combined with metformin (Competact). How do they work? Oral medicines work in five basic ways to lower blood gluco Continue reading >>

New Devices Improve Diabetes Control

New Devices Improve Diabetes Control

Insulin Pump, Shots Equally Effective, but Pump Plus Monitor Is Best July 9, 2012 -- By combining insulin pumps with continuous blood sugar sensors, people with diabetes get better blood sugar control than those using finger-stick testing and insulin shots, new research suggests. The findings come from an analysis of studies comparing new technologies to traditional methods for monitoring and controlling blood sugar. The studies find that old-fashioned insulin injections control blood sugar just as well as insulin pumps. But most studies find that people get better results by combining the pumps with new blood sugar-monitoring devices. Patients who used continuous glucose monitors to automatically track blood sugar had better blood sugar levels than people who used finger stick testing alone. However, the two methods were equally effective at keeping blood sugar from dropping to dangerously low levels. Insulin pumps were no more effective for controlling blood sugar than self injection in most studies, but people tended to prefer the pumps over giving themselves shots many times a day. And people who used insulin pumps with coordinated, real-time continuous monitoring devices achieved better blood sugar control than people who use finger-stick testing and shots alone. "When we compared the new to the old, we saw a much greater improvement in glucose control when the newer devices were used together," study author Sherita Hill Golden, MD, MHS, of Baltimore's Johns Hopkins University School of Medicine, tells WebMD. More Options for People With Insulin-Dependent Diabetes About 26 million Americans have diabetes , in which the body fails to produce enough insulin to control the amount of sugar in the blood. All people with type 1 diabetes and many people with type 2 disea Continue reading >>

More in insulin