diabetestalk.net

How Does The Lack Of Insulin Affect The Body?

Insulin And Insulin Resistance

Insulin And Insulin Resistance

Go to: Abstract As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the compl Continue reading >>

You And Your Hormones

You And Your Hormones

What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

Diabetes Mellitus

Diabetes Mellitus

Diabetes Mellitus Definition Diabetes mellitus is a condition in which the pancreas no longer produces enough insulin or cells stop responding to the insulin that is produced, so that glucose in the blood cannot be absorbed into the cells of the body. Symptoms include frequent urination, lethargy, excessive thirst, and hunger. The treatment includes changes in diet, oral medications, and in some cases, daily injections of insulin. Description Diabetes mellitus is a chronic disease that causes serious health complications including renal (kidney) failure, heart disease, stroke, and blindness. Approximately 17 million Americans have diabetes. Unfortunately, as many as one-half are unaware they have it. Background Every cell in the human body needs energy in order to function. The body's primary energy source is glucose, a simple sugar resulting from the digestion of foods containing carbohydrates (sugars and starches). Glucose from the digested food circulates in the blood as a ready energy source for any cells that need it. Insulin is a hormone or chemical produced by cells in the pancreas, an organ located behind the stomach. Insulin bonds to a receptor site on the outside of cell and acts like a key to open a doorway into the cell through which glucose can enter. Some of the glucose can be converted to concentrated energy sources like glycogen or fatty acids and saved for later use. When there is not enough insulin produced or when the doorway no longer recognizes the insulin key, glucose stays in the blood rather entering the cells. The body will attempt to dilute the high level of glucose in the blood, a condition called hyperglycemia, by drawing water out of the cells and into the bloodstream in an effort to dilute the sugar and excrete it in the urine. It is not un Continue reading >>

Insulin Deficiency: Phys Effects

Insulin Deficiency: Phys Effects

The effects of insulin, a hormone secreted by pancreatic islet beta-cells, are numerous, leading to biochemical changes in nearly every tissue in the body. Among its many functions, insulin induces glucose uptake by tissues and glycogen synthesis in the liver and muscles. By inhibiting lipase, insulin additionally limits free fatty acid release from adipose tissue and increases protein synthesis by inducing transport of amino acids into cells. The widespread biochemical effects of insulin result in equally vast physiologic abnormalities when insulin is deficient. Reduced entry of glucose into peripheral tissues and increased release of glucose from the liver leads to hyperglycemia, which in turn leads to several physiologic consequences. Elevated blood glucose concentration leads to a filtered load of glucose that exceeds the kidney’s reabsorptive capacity. Unreabsorbed glucose acts as an osmotic diuretic in the urine, leading to extracellular fluid volume contraction and resulting hypotension, as well as a decrease in total body sodium and potassium. A decreased insulin:glucagon ratio stimulates catabolism of protein and fat, which can lead to increased production and decreased clearance of VLDL leading to hypertriglyceridemia, as well as increase in the by-product acetyl CoA. Excess acetyl CoA in the body from breakdown of fats leads to formation of ketone bodies acetoacetate and b-hydroxybutyrate in the liver. The body is able to buffer some of the hydrogen ions in the setting of ketoacidosis, but metabolic acidosis still develops, leading to increased ventilation rate as a compensatory mechanism. Potassium shifts out of cells in the setting of hyperglycemia and acidosis, and thus normal or even increased serum potassium levels are often seen, despite total body de Continue reading >>

What Is Insulin?

What Is Insulin?

Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

The Role Of Insulin In The Body

The Role Of Insulin In The Body

Tweet Insulin is a hormone which plays a key role in the regulation of blood glucose levels. A lack of insulin, or an inability to adequately respond to insulin, can each lead to the development of the symptoms of diabetes. In addition to its role in controlling blood sugar levels, insulin is also involved in the storage of fat. Insulin is a hormone which plays a number of roles in the body’s metabolism. Insulin regulates how the body uses and stores glucose and fat. Many of the body’s cells rely on insulin to take glucose from the blood for energy. Insulin and blood glucose levels Insulin helps control blood glucose levels by signaling the liver and muscle and fat cells to take in glucose from the blood. Insulin therefore helps cells to take in glucose to be used for energy. If the body has sufficient energy, insulin signals the liver to take up glucose and store it as glycogen. The liver can store up to around 5% of its mass as glycogen. Some cells in the body can take glucose from the blood without insulin, but most cells do require insulin to be present. Insulin and type 1 diabetes In type 1 diabetes, the body produces insufficient insulin to regulate blood glucose levels. Without the presence of insulin, many of the body’s cells cannot take glucose from the blood and therefore the body uses other sources of energy. Ketones are produced by the liver as an alternative source of energy, however, high levels of the ketones can lead to a dangerous condition called ketoacidosis. People with type 1 diabetes will need to inject insulin to compensate for their body’s lack of insulin. Insulin and type 2 diabetes Type 2 diabetes is characterised by the body not responding effectively to insulin. This is termed insulin resistance. As a result the body is less able to t Continue reading >>

Insulin: Understanding Its Action In Health And Disease

Insulin: Understanding Its Action In Health And Disease

Br J Anaesth 2000; 85: 69–79 The results of pancreas extirpation and pancreas grafting are best explained by supposing that the islet tissue produce an Autacoid which passes into the blood stream and effects carbohydrate metabolism and carbohydrate storage in such a manner that there is no undue accumulation of glucose in the blood. Provisionally it will be convenient to refer to this hypothetical substance as insuline. Sir Edward Schafer, The Endocrine Organs (1916) Historical background Sir Edward Schafer, who was Professor of Physiology in Edinburgh, appears to have named insulin and described its actions. He did so in a book, The Endocrine Organs, based on a lecture series he gave in California in 1913. In this book, published in 1916,5 he gave the hypothetical substance a name that stuck; what is more, with remarkable vision, he described its likely formation from activation of an inert precursor: It must however be stated that it has yet to be determined whether the active substance is produced as such in the pancreas or whether it exists there as pro‐insuline which becomes elsewhere converted into the active autacoid. Insulin was discovered 8 yr later by Banting and Best in 1921. The first patient was treated a year later in 1922 and pro‐insulin was discovered (and re‐named) more than 50 yr later by George Steiner of the University of Chicago in 1967. Schafer deliberately avoided using the word ‘hormone’ and used his preferred terms ‘autacoid’ and ‘chalone’. This was as a result of long‐standing academic rivalry with his contemporaries Professors Baylis and Starling at University College, London. They had previously described secretin as the first hormone to be isolated and characterized. They had coined the term ‘hormones’ to describe t Continue reading >>

I Would Like To Know How The Cells In The Body React When Someone Has Diabetes And How Is This Different From Someone Who Does Not Have Diabetes?

I Would Like To Know How The Cells In The Body React When Someone Has Diabetes And How Is This Different From Someone Who Does Not Have Diabetes?

You have asked a complex question. I will try to explain this as clearly as I can. People who have diabetes have a lack of insulin in their blood. Insulin is made in an organ called the pancreas. Insulin is important to allow glucose (blood sugar) to get into the cells of the body. Put another way, insulin opens the door to let blood sugar to enter most cells in the body. Blood sugar is a food for the bodies cells. If insulin is low or absent in the blood then the cells don't get fed the blood sugar they need. If the blood sugar can not get into the bodies cells then it builds up in the blood stream and the sugar count increases on the blood tests that we do. Also, as the blood sugar increases and can not get into the bodies cells it has the effect of drawing water out of the cells and shrinks them up making them even less healthy. The nerves in the body are affected a bit differently. Nerve cells will allow blood sugar in with out insulin, however without insulin present the sugar is not used by the nerve cell properly and the sugar accumulates in the cell. Over time this will damage the nerve cell and cause the nerve to die. This causes numbness and tingling in the feet and sometimes in the hands.Blood vessels are also made up of cells. As the sugar builds up in these cells it swells them up and this causes a narrowing of the blood vessel. This causes a decrease in the circulation to the feet, the kidneys and the eyes. This is why people with diabetes often loose their legs their eye sight and kidney function. It is very important that people with diabetes learn about their condition, control their blood sugar, and exercise. Continue reading >>

Diabetes Causes

Diabetes Causes

Diabetes is a chronic disease that occurs because the body is unable to use blood sugar (glucose) properly. The exact cause of this malfunction is unknown, but genetic and environmental factors play a part. Risk factors for diabetes include obesity and high levels of cholesterol. Some specific causes are discussed below. Lack of insulin production This is primarily the cause of type 1 diabetes. It occurs when insulin-producing cells are damaged or destroyed and stop producing insulin. Insulin is needed to move blood sugar into cells throughout the body. The resulting insulin deficiency leaves too much sugar in the blood and not enough in the cells for energy. Insulin resistance This is specific to type 2 diabetes. It occurs when insulin is produced normally in the pancreas, but the body is still unable move glucose into the cells for fuel. At first, the pancreas will create more insulin to overcome the body’s resistance. Eventually the cells “wear out.” At that point the body slows insulin production, leaving too much glucose in the blood. This is known as prediabetes. A person with prediabetes has a blood sugar level higher than normal but not high enough for a diagnosis of diabetes. Unless tested, the person may not be aware, as there are no clear symptoms. Type 2 diabetes occurs as insulin production continues to decrease and resistance increases. Symptoms of insulin resistance » Genetics plays a role in determining how likely you are to develop some type of diabetes. Researchers don’t fully understand the role of genetics in the development of diabetes. According to the American Diabetes Association, statistics show that if you have a parent or sibling with diabetes, your odds of developing it yourself increase. Although research is not conclusive, some eth Continue reading >>

Understanding Our Bodies: Insulin

Understanding Our Bodies: Insulin

Almost everyone has heard of Insulin. You probably know that people with type 1 diabetes need to inject themselves with insulin to survive, and must constantly monitor the amount of sugar they eat. But what do you really know about insulin? What is its purpose in the body, and why do we need it? How does it relate to our diets? What happens when things go wrong with it? And why should anyone who doesn’t have diabetes give a hoot? Insulin is one of the most important hormones in the human body, and yet most people don’t really understand why our bodies make it or how what we eat affects the levels of insulin we produce. More so than any other hormone, our diet is key in regulating insulin levels, and thus a number of biological processes. As you’ll soon see, everyone should think about how what they eat impacts their body’s insulin release to be at their happiest and healthiest. Why We Need Insulin Every living thing requires energy to survive. In cells, energy is stored and shuttled around using a molecule called Adenosine Tri-Phosphate, or ATP. Whenever the cell then has an energy-requiring reaction, enzymes can use the energy stored in ATP’s phosphate bonds to fuel it. Cells rely on ATP to survive, and to create ATP, they rely on glucose. All cells, from bacteria and fungi to us, take glucose and use it to generate ATP by a process called Oxidative Phosphorylation. First, glucose is converted to an intermediate molecule called pyruvate via a process called glycolosis. As long as there is oxygen around, this pyruvate is further converted to Acetyl CoA, which enters a cycle of reactions called the Citric Acid Cycle. This takes the carbon to carbon bonds and uses them to create high energy electrons, which are then passed down a chain of enzymes which use the e Continue reading >>

The Effects Of Insulin On The Body

The Effects Of Insulin On The Body

Insulin is a hormone produced by the pancreas. Its function is to allow other cells to transform glucose into energy throughout your body. Without insulin, cells are starved for energy and must seek an alternate source. This can lead to life-threatening complications. The Effects of Insulin on the Body Insulin is a natural hormone produced in the pancreas. When you eat, your pancreas releases insulin to help your body make energy out of sugars (glucose). It also helps you store energy. Insulin is a vital part of metabolism. Without it, your body would cease to function. In type 1 diabetes, the pancreas is no longer able to produce insulin. In Type 2 diabetes, the pancreas initially produces insulin, but the cells of your body are unable to make good use of the insulin (insulin resistance). Uncontrolled diabetes allows glucose to build up in the blood rather than being distributed to cells or stored. This can wreak havoc with virtually every part of your body. Complications of diabetes include kidney disease, nerve damage, eye problems, and stomach problems. People with Type 1 diabetes need insulin therapy to live. Some people with Type 2 diabetes must also take insulin therapy to control blood sugar levels and avoid complications. Insulin is usually injected into the abdomen, but it can also be injected into the upper arms, thighs, or buttocks. Injection sites should be rotated within the same general location. Frequent injections in the same spot can cause fatty deposits that make delivery of insulin more difficult. Some people use a pump, which delivers insulin through a catheter placed underneath the skin of the abdomen. When you eat, food travels to your stomach and small intestines where it is broken down into nutrients. The nutrients are absorbed and distributed v Continue reading >>

Physiologic Effects Of Insulin

Physiologic Effects Of Insulin

Stand on a streetcorner and ask people if they know what insulin is, and many will reply, "Doesn't it have something to do with blood sugar?" Indeed, that is correct, but such a response is a bit like saying "Mozart? Wasn't he some kind of a musician?" Insulin is a key player in the control of intermediary metabolism, and the big picture is that it organizes the use of fuels for either storage or oxidation. Through these activities, insulin has profound effects on both carbohydrate and lipid metabolism, and significant influences on protein and mineral metabolism. Consequently, derangements in insulin signalling have widespread and devastating effects on many organs and tissues. The Insulin Receptor and Mechanism of Action Like the receptors for other protein hormones, the receptor for insulin is embedded in the plasma membrane. The insulin receptor is composed of two alpha subunits and two beta subunits linked by disulfide bonds. The alpha chains are entirely extracellular and house insulin binding domains, while the linked beta chains penetrate through the plasma membrane. The insulin receptor is a tyrosine kinase. In other words, it functions as an enzyme that transfers phosphate groups from ATP to tyrosine residues on intracellular target proteins. Binding of insulin to the alpha subunits causes the beta subunits to phosphorylate themselves (autophosphorylation), thus activating the catalytic activity of the receptor. The activated receptor then phosphorylates a number of intracellular proteins, which in turn alters their activity, thereby generating a biological response. Several intracellular proteins have been identified as phosphorylation substrates for the insulin receptor, the best-studied of which is insulin receptor substrate 1 or IRS-1. When IRS-1 is activa Continue reading >>

How Does A Lack Of Insulin Affect Your Body?

How Does A Lack Of Insulin Affect Your Body?

Up Next It is estimated that up to a third of Americans who have diabetes are unaware that they have the disease. One of the more common symptoms of diabetes is a high level of glucose in the blood. This is brought on by the fact that when the body doesn’t produce insulin, the cells are unable to absorb glucose. As a result, it remains in the bloodstream, which winds up pushing up the blood-glucose levels. Fatigue is also associated with diabetes; this symptom is likewise a result of glucose not being absorbed from the bloodstream. Since glucose is the body’s major source of energy, a person will feel tired if his or her body doesn’t have any fuel to burn. When glucose goes unabsorbed by the cells, it leaves the kidneys with more glucose to filter; however, there’s a limit to how much glucose the kidneys are able to filter. As a result, excess glucose will show up in the urine and stay in the tubule lumen. Because this glucose retains water, the result is increased urine flow, which is the cause of another common symptom of diabetes: excess thirst. Higher levels of urine flow make the body lose sodium, which activates the brain’s thirst receptors. Excessive hunger is another symptom associated with diabetes. While it’s still not clear how the brain’s hunger centers are stimulated, one theory is that high glucagon levels might be the cause. Yet, even as you eat more frequently, you start to lose weight. This is because a lack of insulin causes the rate at which fat cells are broken down in the body to increase, which leads to weight loss. Continue reading >>

Facts About Diabetes And Insulin

Facts About Diabetes And Insulin

Diabetes is a very common disease, which, if not treated, can be very dangerous. There are two types of diabetes. They were once called juvenile-onset diabetes and adult diabetes. However, today we know that all ages can get both types so they are simply called type 1 and type 2 diabetes. Type 1, which occurs in approximately 10 percent of all cases, is an autoimmune disease in which the immune system, by mistake, attacks its own insulin-producing cells so that insufficient amounts of insulin are produced - or no insulin at all. Type 1 affects predominantly young people and usually makes its debut before the age of 30, and most frequently between the ages of 10 and 14. Type 2, which makes up the remaining 90 percent of diabetes cases, commonly affects patients during the second half of their lives. The cells of the body no longer react to insulin as they should. This is called insulin resistance. In the early 1920s, Frederick Banting, John Macleod, George Best and Bertram Collip isolated the hormone insulin and purified it so that it could be administered to humans. This was a major breakthrough in the treatment of diabetes type 1. Insulin Insulin is a hormone. Hormones are chemical substances that regulate the cells of the body and are produced by special glands. The hormone insulin is a main regulator of the glucose (sugar) levels in the blood. Insulin is produced in the pancreas. To be more specific, it's produced by the beta cells in the islets of Langerhans in the pancreas. When we eat, glucose levels rise, and insulin is released into the bloodstream. The insulin acts like a key, opening up cells so they can take in the sugar and use it as an energy source. Sugar is one of the top energy sources for the body. The body gets it in many forms, but mainly as carbohydr Continue reading >>

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

The pancreas secretes insulin and glucagon, both of which play a vital role in regulating blood sugar levels. The two hormones work in balance. If the level of one hormone is outside the ideal range, blood sugar levels may spike or drop. Together, insulin and glucagon help keep conditions inside the body steady. When blood sugar is too high, the pancreas secretes more insulin. When blood sugar levels drop, the pancreas releases glucagon to bring them back up. Blood sugar and health The body converts carbohydrates from food into sugar (glucose), which serves as a vital source of energy. Blood sugar levels vary throughout the day but, in most instances, insulin and glucagon keep these levels normal. Health factors including insulin resistance, diabetes, and problems with diet can cause a person's blood sugar levels to soar or plummet. Blood sugar levels are measured in milligrams per decilitre (mg/dl). Ideal blood sugar ranges are as follows: Before breakfast - levels should be less than 100 mg/dl for a person without diabetes and 70-130 mg/dl for a person with diabetes. Two hours after meals - levels should be less than 140 mg/dl for a person without diabetes and less than 180 mg/dl for a person with diabetes. Blood sugar regulation Blood sugar levels are a measure of how effectively an individual's body uses glucose. When the body does not convert enough glucose for use, blood sugar levels remain high. Insulin helps the body's cells absorb glucose, lowering blood sugar and providing the cells with the glucose they need for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon forces the liver to release stored glucose, which causes the blood sugar to rise. Insulin and glucagon are both released by islet cells in the pancreas. These cells Continue reading >>

More in insulin