
The Liver & Blood Sugar
During a meal, your liver stores sugar for later. When you’re not eating, the liver supplies sugar by turning glycogen into glucose in a process called glycogenolysis. The liver both stores and produces sugar… The liver acts as the body’s glucose (or fuel) reservoir, and helps to keep your circulating blood sugar levels and other body fuels steady and constant. The liver both stores and manufactures glucose depending upon the body’s need. The need to store or release glucose is primarily signaled by the hormones insulin and glucagon. During a meal, your liver will store sugar, or glucose, as glycogen for a later time when your body needs it. The high levels of insulin and suppressed levels of glucagon during a meal promote the storage of glucose as glycogen. The liver makes sugar when you need it…. When you’re not eating – especially overnight or between meals, the body has to make its own sugar. The liver supplies sugar or glucose by turning glycogen into glucose in a process called glycogenolysis. The liver also can manufacture necessary sugar or glucose by harvesting amino acids, waste products and fat byproducts. This process is called gluconeogenesis. When your body’s glycogen storage is running low, the body starts to conserve the sugar supplies for the organs that always require sugar. These include: the brain, red blood cells and parts of the kidney. To supplement the limited sugar supply, the liver makes alternative fuels called ketones from fats. This process is called ketogenesis. The hormone signal for ketogenesis to begin is a low level of insulin. Ketones are burned as fuel by muscle and other body organs. And the sugar is saved for the organs that need it. The terms “gluconeogenesis, glycogenolysis and ketogenesis” may seem like compli Continue reading >>

You And Your Hormones
What is insulin? Insulin is a hormone made by an organ located behind the stomach called the pancreas. Here, insulin is released into the bloodstream by specialised cells called beta cells found in areas of the pancreas called islets of langerhans (the term insulin comes from the Latin insula meaning island). Insulin can also be given as a medicine for patients with diabetes because they do not make enough of their own. It is usually given in the form of an injection. Insulin is released from the pancreas into the bloodstream. It is a hormone essential for us to live and has many effects on the whole body, mainly in controlling how the body uses carbohydrate and fat found in food. Insulin allows cells in the muscles, liver and fat (adipose tissue) to take up sugar (glucose) that has been absorbed into the bloodstream from food. This provides energy to the cells. This glucose can also be converted into fat to provide energy when glucose levels are too low. In addition, insulin has several other metabolic effects (such as stopping the breakdown of protein and fat). How is insulin controlled? When we eat food, glucose is absorbed from our gut into the bloodstream. This rise in blood glucose causes insulin to be released from the pancreas. Proteins in food and other hormones produced by the gut in response to food also stimulate insulin release. However, once the blood glucose levels return to normal, insulin release slows down. In addition, hormones released in times of acute stress, such as adrenaline, stop the release of insulin, leading to higher blood glucose levels. The release of insulin is tightly regulated in healthy people in order to balance food intake and the metabolic needs of the body. Insulin works in tandem with glucagon, another hormone produced by the pan Continue reading >>

Type 2 Diabetes: What Is It?
When it comes to your body, you probably spend more time thinking about your hair than your hormones. For some people, though, a problem with a hormone called insulin causes a health condition called type 2 diabetes (pronounced: dye-uh-BEE-tees). Diabetes is a disease that affects how the body uses glucose (pronounced: GLOO-kose), a sugar that is the body's main source of fuel. Your body needs glucose to keep running. Here's how it should work: Glucose from the food gets into your bloodstream. Your pancreas makes a hormone called insulin (pronounced: IN-suh-lin). Insulin helps the glucose get into the body's cells. The pancreas is a long, flat gland in your belly that helps your body digest food. It also makes insulin. Insulin is like a key that opens the doors to the cells of the body. It lets the glucose in. Then the glucose can move out of the blood and into the cells. But if someone has diabetes, either the body can't make insulin or the insulin doesn't work in the body like it should. The glucose can't get into the cells normally, so the blood sugar level gets too high. Lots of sugar in the blood makes people sick if they don't get treatment. There are two major types of diabetes: type 1 and type 2. Each type causes high blood sugar levels in a different way. In type 1 diabetes , the pancreas can't make insulin. The body can still get glucose from food, but the glucose can't get into the cells, where it's needed, and glucose stays in the blood. This makes the blood sugar level very high. With type 2 diabetes, the body still makes insulin. But a person with type 2 diabetes doesn't respond normally to the insulin the body makes. So glucose is less able to enter the cells and do its job of supplying energy. When glucose can't enter the cells in this way, doctors call Continue reading >>

The Effects Of Insulin On The Body
Insulin is a hormone produced by the pancreas. Its function is to allow other cells to transform glucose into energy throughout your body. Without insulin, cells are starved for energy and must seek an alternate source. This can lead to life-threatening complications. The Effects of Insulin on the Body Insulin is a natural hormone produced in the pancreas. When you eat, your pancreas releases insulin to help your body make energy out of sugars (glucose). It also helps you store energy. Insulin is a vital part of metabolism. Without it, your body would cease to function. In type 1 diabetes, the pancreas is no longer able to produce insulin. In Type 2 diabetes, the pancreas initially produces insulin, but the cells of your body are unable to make good use of the insulin (insulin resistance). Uncontrolled diabetes allows glucose to build up in the blood rather than being distributed to cells or stored. This can wreak havoc with virtually every part of your body. Complications of diabetes include kidney disease, nerve damage, eye problems, and stomach problems. People with Type 1 diabetes need insulin therapy to live. Some people with Type 2 diabetes must also take insulin therapy to control blood sugar levels and avoid complications. Insulin is usually injected into the abdomen, but it can also be injected into the upper arms, thighs, or buttocks. Injection sites should be rotated within the same general location. Frequent injections in the same spot can cause fatty deposits that make delivery of insulin more difficult. Some people use a pump, which delivers insulin through a catheter placed underneath the skin of the abdomen. When you eat, food travels to your stomach and small intestines where it is broken down into nutrients. The nutrients are absorbed and distributed v Continue reading >>

What Is Insulin?
Essential for life, the hormone insulin regulates many metabolic processes that provide cells with needed energy. Understanding insulin, what insulin does, and how it affects the body, is important to your overall health. Tucked away behind the stomach is an organ called the pancreas, which produces insulin. Insulin production is regulated based on blood sugar levels and other hormones in the body. In a healthy individual, insulin production and release is a tightly regulated process, allowing the body to balance its metabolic needs. What does insulin do? Insulin allows the cells in the muscles, fat and liver to absorb glucose that is in the blood. The glucose serves as energy to these cells, or it can be converted into fat when needed. Insulin also affects other metabolic processes, such as the breakdown of fat or protein. Problems with insulin production or use The most common problem associated with insulin is diabetes. Diabetes occurs when the body either does not secrete enough insulin or when the body no longer uses the insulin it secretes effectively. Diabetes falls into two categories: Type 1 diabetes occurs when the pancreas cannot produce insulin sufficiently to meet its own needs. This commonly occurs in children, and while an exact cause has not been found, many consider it to be an autoimmune disease. Some symptoms of type 1 diabetes include tiredness, increased urination and thirst, and problems with vision. Type 2 diabetes is more commonly associated with adults and lifestyle choices. People with type 2 diabetes will produce insulin but often not enough for their body's needs. They may also struggle to use the insulin they produce effectively. Patients may not know they have type 2 diabetes until they have an annual checkup, as symptoms tend to be mild un Continue reading >>

What Is Insulin?
Insulin is a hormone made by the pancreas that allows your body to use sugar (glucose) from carbohydrates in the food that you eat for energy or to store glucose for future use. Insulin helps keeps your blood sugar level from getting too high (hyperglycemia) or too low (hypoglycemia). The cells in your body need sugar for energy. However, sugar cannot go into most of your cells directly. After you eat food and your blood sugar level rises, cells in your pancreas (known as beta cells) are signaled to release insulin into your bloodstream. Insulin then attaches to and signals cells to absorb sugar from the bloodstream. Insulin is often described as a “key,” which unlocks the cell to allow sugar to enter the cell and be used for energy. If you have more sugar in your body than it needs, insulin helps store the sugar in your liver and releases it when your blood sugar level is low or if you need more sugar, such as in between meals or during physical activity. Therefore, insulin helps balance out blood sugar levels and keeps them in a normal range. As blood sugar levels rise, the pancreas secretes more insulin. If your body does not produce enough insulin or your cells are resistant to the effects of insulin, you may develop hyperglycemia (high blood sugar), which can cause long-term complications if the blood sugar levels stay elevated for long periods of time. Insulin Treatment for Diabetes People with type 1 diabetes cannot make insulin because the beta cells in their pancreas are damaged or destroyed. Therefore, these people will need insulin injections to allow their body to process glucose and avoid complications from hyperglycemia. People with type 2 diabetes do not respond well or are resistant to insulin. They may need insulin shots to help them better process Continue reading >>

Insulin
This article is about the insulin protein. For uses of insulin in treating diabetes, see insulin (medication). Not to be confused with Inulin. Insulin (from Latin insula, island) is a peptide hormone produced by beta cells of the pancreatic islets, and it is considered to be the main anabolic hormone of the body.[5] It regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of, especially, glucose from the blood into fat, liver and skeletal muscle cells.[6] In these tissues the absorbed glucose is converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver, into both.[6] Glucose production and secretion by the liver is strongly inhibited by high concentrations of insulin in the blood.[7] Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is therefore an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules inside the cells. Low insulin levels in the blood have the opposite effect by promoting widespread catabolism, especially of reserve body fat. Beta cells are sensitive to glucose concentrations, also known as blood sugar levels. When the glucose level is high, the beta cells secrete insulin into the blood; when glucose levels are low, secretion of insulin is inhibited.[8] Their neighboring alpha cells, by taking their cues from the beta cells,[8] secrete glucagon into the blood in the opposite manner: increased secretion when blood glucose is low, and decreased secretion when glucose concentrations are high.[6][8] Glucagon, through stimulating the liver to release glucose by glycogenolysis and gluconeogenesis, has the opposite effect of insulin.[6][8] The secretion of insulin and glucagon into the Continue reading >>

Facts About Diabetes And Insulin
Diabetes is a very common disease, which, if not treated, can be very dangerous. There are two types of diabetes. They were once called juvenile-onset diabetes and adult diabetes. However, today we know that all ages can get both types so they are simply called type 1 and type 2 diabetes. Type 1, which occurs in approximately 10 percent of all cases, is an autoimmune disease in which the immune system, by mistake, attacks its own insulin-producing cells so that insufficient amounts of insulin are produced - or no insulin at all. Type 1 affects predominantly young people and usually makes its debut before the age of 30, and most frequently between the ages of 10 and 14. Type 2, which makes up the remaining 90 percent of diabetes cases, commonly affects patients during the second half of their lives. The cells of the body no longer react to insulin as they should. This is called insulin resistance. In the early 1920s, Frederick Banting, John Macleod, George Best and Bertram Collip isolated the hormone insulin and purified it so that it could be administered to humans. This was a major breakthrough in the treatment of diabetes type 1. Insulin Insulin is a hormone. Hormones are chemical substances that regulate the cells of the body and are produced by special glands. The hormone insulin is a main regulator of the glucose (sugar) levels in the blood. Insulin is produced in the pancreas. To be more specific, it's produced by the beta cells in the islets of Langerhans in the pancreas. When we eat, glucose levels rise, and insulin is released into the bloodstream. The insulin acts like a key, opening up cells so they can take in the sugar and use it as an energy source. Sugar is one of the top energy sources for the body. The body gets it in many forms, but mainly as carbohydr Continue reading >>

The Role Of Insulin In The Body
Tweet Insulin is a hormone which plays a key role in the regulation of blood glucose levels. A lack of insulin, or an inability to adequately respond to insulin, can each lead to the development of the symptoms of diabetes. In addition to its role in controlling blood sugar levels, insulin is also involved in the storage of fat. Insulin is a hormone which plays a number of roles in the body’s metabolism. Insulin regulates how the body uses and stores glucose and fat. Many of the body’s cells rely on insulin to take glucose from the blood for energy. Insulin and blood glucose levels Insulin helps control blood glucose levels by signaling the liver and muscle and fat cells to take in glucose from the blood. Insulin therefore helps cells to take in glucose to be used for energy. If the body has sufficient energy, insulin signals the liver to take up glucose and store it as glycogen. The liver can store up to around 5% of its mass as glycogen. Some cells in the body can take glucose from the blood without insulin, but most cells do require insulin to be present. Insulin and type 1 diabetes In type 1 diabetes, the body produces insufficient insulin to regulate blood glucose levels. Without the presence of insulin, many of the body’s cells cannot take glucose from the blood and therefore the body uses other sources of energy. Ketones are produced by the liver as an alternative source of energy, however, high levels of the ketones can lead to a dangerous condition called ketoacidosis. People with type 1 diabetes will need to inject insulin to compensate for their body’s lack of insulin. Insulin and type 2 diabetes Type 2 diabetes is characterised by the body not responding effectively to insulin. This is termed insulin resistance. As a result the body is less able to t Continue reading >>

How Insulin Is Made - Material, Manufacture, History, Used, Parts, Components, Structure, Steps, Product
Background Insulin is a hormone that regulates the amount of glucose (sugar) in the blood and is required for the body to function normally. Insulin is produced by cells in the pancreas, called the islets of Langerhans. These cells continuously release a small amount of insulin into the body, but they release surges of the hormone in response to a rise in the blood glucose level. Certain cells in the body change the food ingested into energy, or blood glucose, that cells can use. Every time a person eats, the blood glucose rises. Raised blood glucose triggers the cells in the islets of Langerhans to release the necessary amount of insulin. Insulin allows the blood glucose to be transported from the blood into the cells. Cells have an outer wall, called a membrane, that controls what enters and exits the cell. Researchers do not yet know exactly how insulin works, but they do know insulin binds to receptors on the cell's membrane. This activates a set of transport molecules so that glucose and proteins can enter the cell. The cells can then use the glucose as energy to carry out its functions. Once transported into the cell, the blood glucose level is returned to normal within hours. Without insulin, the blood glucose builds up in the blood and the cells are starved of their energy source. Some of the symptoms that may occur include fatigue, constant infections, blurred eye sight, numbness, tingling in the hands or legs, increased thirst, and slowed healing of bruises or cuts. The cells will begin to use fat, the energy source stored for emergencies. When this happens for too long a time the body produces ketones, chemicals produced by the liver. Ketones can poison and kill cells if they build up in the body over an extended period of time. This can lead to serious illne Continue reading >>
- diabetes: Gestational diabetes is a more serious problem in India than in other parts of the world: Dr Nam Han Cho, Health News, ET HealthWorld
- 7 Steps To Help Reverse Type-2 Diabetes So You Never Have To Take Insulin Or Medication Again
- Reversing Type 2 Diabetes Naturally In 7 Steps – Never Take Insulin Or Medication Again

An Overview Of The Pancreas
Pancreas Essentials The pancreas maintains the body’s blood glucose (sugar) balance. Primary hormones of the pancreas include insulin and glucagon, and both regulate blood glucose. Diabetes is the most common disorder associated with the pancreas. The pancreas is unique in that it’s both an endocrine and exocrine gland. In other words, the pancreas has the dual function of secreting hormones into blood (endocrine) and secreting enzymes through ducts (exocrine). The pancreas belongs to the endocrine and digestive systems—with most of its cells (more than 90%) working on the digestive side. However, the pancreas performs the vital duty of producing hormones—most notably insulin—to maintain the balance of blood glucose (sugar) and salt in the body. Without this balance, your body is susceptible to serious complications, such as diabetes. Anatomy of the Pancreas The pancreas is a 6 inch-long flattened gland that lies deep within the abdomen, between the stomach and the spine. It is connected to the duodenum, which is part of the small intestine. Only about 5% of the pancreas is comprised of endocrine cells. These cells are clustered in groups within the pancreas and look like little islands of cells when examined under a microscope. These groups of pancreatic endocrine cells are known as pancreatic islets or more specifically, islets of Langerhans (named after the scientist who discovered them). Hormones of the Pancreas The production of pancreatic hormones, including insulin, somatostatin, gastrin, and glucagon, play an important role in maintaining sugar and salt balance in our bodies. Gastrin: This hormone aids digestion by stimulating certain cells in the stomach to produce acid. Glucagon: Glucagon helps insulin maintain normal blood glucose by working in the Continue reading >>

Insulin Synthesis And Secretion
Insulin is a small protein, with a molecular weight of about 6000 Daltons. It is composed of two chains held together by disulfide bonds. The figure to the right shows a molecular model of bovine insulin, with the A chain colored blue and the larger B chain green. You can get a better appreciation for the structure of insulin by manipulating such a model yourself. The amino acid sequence is highly conserved among vertebrates, and insulin from one mammal almost certainly is biologically active in another. Even today, many diabetic patients are treated with insulin extracted from pig pancreas. Biosynthesis of Insulin Insulin is synthesized in significant quantities only in beta cells in the pancreas. The insulin mRNA is translated as a single chain precursor called preproinsulin, and removal of its signal peptide during insertion into the endoplasmic reticulum generates proinsulin. Proinsulin consists of three domains: an amino-terminal B chain, a carboxy-terminal A chain and a connecting peptide in the middle known as the C peptide. Within the endoplasmic reticulum, proinsulin is exposed to several specific endopeptidases which excise the C peptide, thereby generating the mature form of insulin. Insulin and free C peptide are packaged in the Golgi into secretory granules which accumulate in the cytoplasm. When the beta cell is appropriately stimulated, insulin is secreted from the cell by exocytosis and diffuses into islet capillary blood. C peptide is also secreted into blood, but has no known biological activity. Control of Insulin Secretion Insulin is secreted in primarily in response to elevated blood concentrations of glucose. This makes sense because insulin is "in charge" of facilitating glucose entry into cells. Some neural stimuli (e.g. sight and taste of food) Continue reading >>
- Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE)
- Insulin, glucagon and somatostatin stores in the pancreas of subjects with type-2 diabetes and their lean and obese non-diabetic controls
- Only 2 Ingredients and You Can Say Goodbye to Diabetes Forever! No More Medications and Insulin!!!

What Is Insulin?
Insulin is a hormone; a chemical messenger produced in one part of the body to have an action on another. It is a protein responsible for regulating blood glucose levels as part of metabolism.1 The body manufactures insulin in the pancreas, and the hormone is secreted by its beta cells, primarily in response to glucose.1 The beta cells of the pancreas are perfectly designed "fuel sensors" stimulated by glucose.2 As glucose levels rise in the plasma of the blood, uptake and metabolism by the pancreas beta cells are enhanced, leading to insulin secretion.1 Insulin has two modes of action on the body - an excitatory one and an inhibitory one:3 Insulin stimulates glucose uptake and lipid synthesis It inhibits the breakdown of lipids, proteins and glycogen, and inhibits the glucose pathway (gluconeogenesis) and production of ketone bodies (ketogenesis). What is the pancreas? The pancreas is the organ responsible for controlling sugar levels. It is part of the digestive system and located in the abdomen, behind the stomach and next to the duodenum - the first part of the small intestine.4 The pancreas has two main functional components:4,5 Exocrine cells - cells that release digestive enzymes into the gut via the pancreatic duct The endocrine pancreas - islands of cells known as the islets of Langerhans within the "sea" of exocrine tissue; islets release hormones such as insulin and glucagon into the blood to control blood sugar levels. Islets are highly vascularized (supplied by blood vessels) and specialized to monitor nutrients in the blood.2 The alpha cells of the islets secrete glucagon while the beta cells - the most abundant of the islet cells - release insulin.5 The release of insulin in response to elevated glucose has two phases - a first around 5-10 minutes after g Continue reading >>

Pancreas And Insulin
Your pancreas is one of the organs of your digestive system. It lies in your abdomen, behind your stomach. It is a long thin structure with 2 main functions: producing digestive enzymes to break down food; and producing the hormones insulin and glucagon to control sugar levels in your body. Production of digestive enzymes The pancreas produces secretions necessary for you to digest food. The enzymes in these secretions allow your body to digest protein, fat and starch from your food. The enzymes are produced in the acinar cells which make up most of the pancreas. From the acinar cells the enzymes flow down various channels into the pancreatic duct and then out into the duodenum. The secretions are alkaline to balance the acidic juices and partially digested food coming into the duodenum from the stomach. Production of hormones to control blood sugar levels A small proportion (1-2 per cent) of the pancreas is made up of other types of cells called islets of Langerhans. These cells sit in tiny groups, like small islands, scattered throughout the tissue of the pancreas. The islets of Langerhans contain alpha cells which secrete glucagon and beta cells which secrete insulin. Insulin and glucagon are hormones that work to regulate the level of sugar (glucose) in the body to keep it within a healthy range. Unlike the acinar cells, the islets of Langerhans do not have ducts and secrete insulin and glucagon directly into the bloodstream. Depending on what you’ve eaten, how much exercise your muscles are doing, and how active your body cells are, the amount of glucose in your bloodstream and cells varies. These 2 hormones have the job of keeping tight control of the amount of glucose in your blood so that it doesn’t rise or fall outside of healthy limits. How insulin works I Continue reading >>

Insulin's Role In The Human Body
Insulin is a hormone produced by the pancreas that has a number of important functions in the human body, particularly in the control of blood glucose levels and preventing hyperglycemia. It also has an effect on several other areas of the body, including the synthesis of lipids and regulation of enzymatic activity. Insulin and Metabolic Processes The most important role of insulin in the human body is its interaction with glucose to allow the cells of the body to use glucose as energy. The pancreas usually produces more insulin in response to a spike in blood sugar level, for example after eating a meal high in energy. This is because the insulin acts as a “key” to open up the cells in the body and allows the glucose to be used as an energy source. Additionally, when there is excess glucose in the bloodstream, known as hyperglycemia, insulin encourages the storage of glucose as glycogen in the liver, muscle and fat cells. These stores can then be used at a later date when energy requirements are higher. As a result of this, there is less insulin in the bloodstream, and normal blood glucose levels are restored. Insulin stimulates the synthesis of glycogen in the liver, but when the liver is saturated with glycogen, an alternative pathway takes over. This involves the uptake of additional glucose into adipose tissue, leading to the synthesis of lipoproteins. Results Without Insulin In the absence of insulin, the body is not able to utilize the glucose as energy in the cells. As a result, the glucose remains in the bloodstream and can lead to high blood sugar, known as hyperglycemia. Chronic hyperglycemia is characteristic of diabetes mellitus and, if untreated, is associated with severe complications, such as damage to the nervous system, eyes, kidneys and extremitie Continue reading >>